cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345021 a(n) is the result of replacing 2's by 0's in the hereditary base-2 expansion of n.

This page as a plain text file.
%I A345021 #7 Jun 07 2021 14:54:58
%S A345021 0,1,0,1,1,2,1,2,0,1,0,1,1,2,1,2,0,1,0,1,1,2,1,2,0,1,0,1,1,2,1,2,0,1,
%T A345021 0,1,1,2,1,2,0,1,0,1,1,2,1,2,0,1,0,1,1,2,1,2,0,1,0,1,1,2,1,2,0,1,0,1,
%U A345021 1,2,1,2,0,1,0,1,1,2,1,2,0,1,0,1,1,2,1
%N A345021 a(n) is the result of replacing 2's by 0's in the hereditary base-2 expansion of n.
%C A345021 The 0's in hereditary base-2 expansions appear at leaf positions.
%C A345021 This sequence is unbounded:
%C A345021 - let b(1) = 2^0, and for any n > 1, b(n+1) = 2^2^b(n),
%C A345021 - a(b(n)) = 1 for any n > 0,
%C A345021 - a(Sum_{k = 1..n} b(k)) = n.
%H A345021 Rémy Sigrist, <a href="/A345021/a345021.png">Colored scatterplot of the ordinal transform of the first 2^14 terms</a>
%H A345021 Rémy Sigrist, <a href="/A345021/a345021_1.png">Colored scatterplot of the ordinal transform of the first 2^17 terms</a>
%H A345021 Wikipedia, <a href="https://en.wikipedia.org/wiki/Goodstein&#39;s_theorem#Hereditary_base-n_notation">Hereditary base-n notation</a>
%F A345021 a(n) = A342707(n, 0).
%e A345021 For n = 13:
%e A345021 - 13 = 2^(2^2^0 + 2^0) + 2^2^2^0 + 2^0,
%e A345021 - so a(13) = 0^(0^0^0 + 0^0) + 0^0^0^0 + 0^0 = 2.
%o A345021 (PARI) a(n) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=0^a(e)); v }
%Y A345021 Cf. A342707.
%K A345021 nonn,base
%O A345021 0,6
%A A345021 _Rémy Sigrist_, Jun 05 2021