cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345031 a(n) = 6*a(n-1) - 7*a(n-2) - 2*a(n-3) for n >= 3, with a(0) = a(1) = 0, a(2) = 1.

Original entry on oeis.org

0, 0, 1, 6, 29, 130, 565, 2422, 10317, 43818, 185845, 787710, 3337709, 14140594, 59904181, 253765510, 1074982605, 4553728698, 19289962933, 81713711502, 346145071085, 1466294520130, 6211324200181, 26311593418006, 111457702066509, 472142410072650
Offset: 0

Views

Author

Jianing Song, Jun 06 2021

Keywords

Comments

a(n) is the lower-left entry of {{6, -7, -2}, {1, 0, 0}, {0, 1, 0}}^n.
2p = A100484(k) divides a(p) for odd prime p = prime(k).
a(n) and n have the opposite parity for n >= 1. - Jianing Song, Jun 09 2021

Crossrefs

Cf. A343575.

Programs

  • PARI
    a(n) = my(M = [6, -7, -2; 1, 0, 0; 0, 1, 0]); (M^n)[3,1]

Formula

a(n) = (((1 + sqrt(5))/2)^(3n) + ((1 - sqrt(5))/2)^(3n) - 2^(n+1))/10.
Relation with A343575:
For even n, A343575(n) = 10*(a(n) mod (2*n)) - 1;
For odd n, A343575(n) = 10*(a(n) mod (2*n)).
O.g.f.: x^2/((1 - 2*x)*(1 - 4*x - x^2)).
E.g.f.: (exp((2 + sqrt(5))*x) + exp((2 - sqrt(5))*x) - 2*exp(2*x))/10.