cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345053 Positions of zeros in A345055, which is the Dirichlet inverse of A011772.

This page as a plain text file.
%I A345053 #22 Jul 06 2021 01:55:19
%S A345053 8,16,32,64,98,128,147,256,512,1024,1552,2048,2597,2752,3088,4064,
%T A345053 4096,4112,5648,6112,6176,7184,7399,8128,8192,8224,9232,9344,10256,
%U A345053 10768,12256,12304,14368,14864,16384,16448,17003,18448,18464,18688,19472,19984,20512,20992,22544,24512,24608,25616,27152,30224,31409,32272,32768
%N A345053 Positions of zeros in A345055, which is the Dirichlet inverse of A011772.
%H A345053 Chai Wah Wu, <a href="/A345053/b345053.txt">Table of n, a(n) for n = 1..10000</a>
%F A345053 From _Chai Wah Wu_, Jul 05 2021: (Start)
%F A345053 Theorem: 2^i for i >= 3 are terms.
%F A345053 Proof: This can be shown by induction on i. For the inductive step, A345055(1)=1, A345055(2)=-3, A345055(3)=2, and A011772(2^i)=2^(i+1)-1.
%F A345053 So for the divisors 1,2,4 for 2^i, A011772(2^i)*A345055(1)+A011772(2^(i-1))*A345055(2)+A011772(2^(i-2))*A345055(4)=0.
%F A345053 A345055(d)=0 for the other proper divisors d of 2^i by the inductive hypothesis as d is a power of 2 and this implies A345033(2^i)=0 for i>=3.
%F A345053 (End)
%F A345053 Conjecture: all terms are of the form 2^i, 2^i*p, 2^i*p*q or 7^2*p for some primes p and q. - _Chai Wah Wu_, Jul 05 2021
%o A345053 (PARI) isA345053(n) = (0==A345055(n));
%Y A345053 Cf. A011772, A345055.
%K A345053 nonn
%O A345053 1,1
%A A345053 _Antti Karttunen_, Jul 01 2021