This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345084 #8 Jul 31 2021 23:41:34 %S A345084 1296378,1371735,1409400,1614185,1824040,1885248,2101464,2302028, %T A345084 2305395,2542968,2851848,2889216,2974392,2988441,3185792,3380833, %U A345084 3681280,3689496,3706984,3775680,3906657,4109832,4123008,4142683,4422592,4842872,4952312,5005125,5023656 %N A345084 Numbers that are the sum of three third powers in exactly six ways. %C A345084 Differs from A345083 at term 7 because 2016496 = 5^3 + 71^3 + 117^3 = 9^3 + 65^3 + 119^3 = 18^3 + 20^3 + 125^3 = 46^3 + 96^3 + 99^3 = 53^3 + 59^3 + 117^3 = 65^3 + 89^3 + 99^3 = 82^3 + 84^3 + 93^3. %H A345084 David Consiglio, Jr., <a href="/A345084/b345084.txt">Table of n, a(n) for n = 1..1000</a> %e A345084 1296378 is a term because 1296378 = 3^3 + 75^3 + 94^3 = 8^3 + 32^3 + 107^3 = 20^3 + 76^3 + 93^3 = 30^3 + 58^3 + 101^3 = 32^3 + 80^3 + 89^3 = 59^3 + 74^3 + 86^3. %o A345084 (Python) %o A345084 from itertools import combinations_with_replacement as cwr %o A345084 from collections import defaultdict %o A345084 keep = defaultdict(lambda: 0) %o A345084 power_terms = [x**3 for x in range(1, 1000)] %o A345084 for pos in cwr(power_terms, 3): %o A345084 tot = sum(pos) %o A345084 keep[tot] += 1 %o A345084 rets = sorted([k for k, v in keep.items() if v == 6]) %o A345084 for x in range(len(rets)): %o A345084 print(rets[x]) %Y A345084 Cf. A025326, A343970, A344648, A345083, A345085, A345149. %K A345084 nonn %O A345084 1,1 %A A345084 _David Consiglio, Jr._, Jun 07 2021