This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345086 #16 Jul 29 2023 13:56:06 %S A345086 2016496,2562624,4525632,4783680,5268024,5618250,6366816,6525000, %T A345086 6755328,7374375,7451352,7457120,8275392,9063144,9086104,9931167, %U A345086 10036872,10266138,10371024,10973880,12002472,12452049,12742920,12983517,13581352,13639816,13641480 %N A345086 Numbers that are the sum of three third powers in seven or more ways. %H A345086 David Consiglio, Jr., <a href="/A345086/b345086.txt">Table of n, a(n) for n = 1..100</a> %e A345086 2016496 is a term because 2016496 = 5^3 + 71^3 + 117^3 = 9^3 + 65^3 + 119^3 = 18^3 + 20^3 + 125^3 = 46^3 + 96^3 + 99^3 = 53^3 + 59^3 + 117^3 = 65^3 + 89^3 + 99^3 = 82^3 + 84^3 + 93^3. %o A345086 (Python) %o A345086 from itertools import combinations_with_replacement as cwr %o A345086 from collections import defaultdict %o A345086 keep = defaultdict(lambda: 0) %o A345086 power_terms = [x**3 for x in range(1, 1000)] %o A345086 for pos in cwr(power_terms, 3): %o A345086 tot = sum(pos) %o A345086 keep[tot] += 1 %o A345086 rets = sorted([k for k, v in keep.items() if v >= 7]) %o A345086 for x in range(len(rets)): %o A345086 print(rets[x]) %Y A345086 Cf. A025335, A344729, A345083, A345085, A345087, A345150. %K A345086 nonn %O A345086 1,1 %A A345086 _David Consiglio, Jr._, Jun 07 2021