This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345113 #6 Jun 09 2021 23:22:53 %S A345113 2,4,6,8,11,33,55,77,99,11,22,33,44,55,66,77,88,99,323,22,33,44,55,66, %T A345113 77,88,99,323,121,33,44,55,66,77,88,99,323,121,683737386,44,55,66,77, %U A345113 88,99,323,121,683737386 %N A345113 a(n) is the palindrome reached after A345112(n) steps under repeated applications of the map x -> A345111(x), starting with n, or 0 if no palindrome is ever reached. %C A345113 First differs from A061563 at n = 19. %e A345113 For n = 19: 19 + 91 = 110, 110 + 101 = 211, 211 + 112 = 323 and 323 is a palindrome, so a(19) = 323. %o A345113 (PARI) eva(n) = subst(Pol(n), x, 10) %o A345113 rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v %o A345113 a(n) = my(x=n); while(1, x=x+eva(rot(digits(x))); if(digits(x)==Vecrev(digits(x)), return(x))) %o A345113 (Python) %o A345113 def pal(s): return s == s[::-1] %o A345113 def rotl(s): return s[1:] + s[0] %o A345113 def A345111(n): return n + int(rotl(str(n))) %o A345113 def a(n): %o A345113 i, iter, seen = 0, n, set() %o A345113 while not (iter > n and pal(str(iter))) and iter not in seen: %o A345113 seen.add(iter) %o A345113 i, iter = i+1, A345111(iter) %o A345113 return iter if iter > n and pal(str(iter)) else 0 %o A345113 print([a(n) for n in range(1, 49)]) # _Michael S. Branicky_, Jun 09 2021 %Y A345113 Cf. A002113, A061563, A345110, A345111, A345112, A345114, A345115. %K A345113 nonn,base,more %O A345113 1,1 %A A345113 _Felix Fröhlich_, Jun 09 2021