This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345115 #6 Jun 09 2021 23:24:37 %S A345115 49,143,574,1319,4510,9614,15763,73394,107341,180752,988273,1871012, %T A345115 10581133,16392464,80317105,83488163,118369801,302067812,322745935, %U A345115 550205288,1052258173,1574839904,7323238945,10555628402,16111912423,77231036654,149541403201 %N A345115 Trajectory of 49 under the map x -> A345111(x). %C A345115 Does the sequence contain a palindrome? %C A345115 There is no palindrome among the initial 100000 (10^5) terms. %e A345115 49 + 94 = 143, 143 + 431 = 574, 574 + 745 = 1319, 1319 + 3191 = 4510, 4510 + 5104 = 9614, ... %o A345115 (PARI) eva(n) = subst(Pol(n), x, 10) %o A345115 rot(vec) = if(#vec < 2, return(vec)); my(s=concat(Str(2), ".."), v=[]); s=concat(s, Str(#vec)); v=vecextract(vec, s); v=concat(v, vec[1]); v %o A345115 terms(n) = my(x=49); for(i=1, n, print1(x, ", "); x=x+eva(rot(digits(x)))) %o A345115 terms(50) \\ Print initial 50 terms %o A345115 (Python) %o A345115 def pal(s): return s == s[::-1] %o A345115 def rotl(s): return s[1:] + s[0] %o A345115 def A345111(n): return n + int(rotl(str(n))) %o A345115 def aupto(n): %o A345115 alst = [49] %o A345115 for i in range(n): alst.append(A345111(alst[-1])) %o A345115 return alst %o A345115 print(aupto(26)) # _Michael S. Branicky_, Jun 09 2021 %Y A345115 Cf. A345110, A345111, A345112, A345113, A345114. %K A345115 nonn,base %O A345115 0,1 %A A345115 _Felix Fröhlich_, Jun 09 2021