A345116 Irregular triangle T(n,k) read by rows in which row n has length the n-th triangular number A000217(n) and every column k lists the positive integers A000027, n >= 1, k >= 1.
1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5
Offset: 1
Examples
Triangle begins: 1; 2, 1, 1; 3, 2, 2, 1, 1, 1; 4, 3, 3, 2, 2, 2, 1, 1, 1, 1; 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1; 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1; ... For n = 6 the divisors of the terms of the 6th row of triangle are: 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1; 3, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1; 2, 1, 1, 1; 1; The sum of these divisors is equal to A175254(6) = 82, equaling the volume of the stepped pyramid with six levels described in A245092.
Comments