This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345118 #29 Jan 31 2024 16:47:34 %S A345118 0,4,11,20,34,50,69,92,116,144,175,208,246,286,329,376,424,476,531, %T A345118 588,650,714,781,852,924,1000,1079,1160,1246,1334,1425,1520,1616,1716, %U A345118 1819,1924,2034,2146,2261,2380,2500,2624,2751,2880,3014,3150,3289,3432,3576,3724 %N A345118 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a basketweave pattern where all the multiple strands are of unit width, the horizontal ones appearing as 1 X 3 rectangles, while the vertical ones as unit area squares. %H A345118 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,-1,3,-3,1). %F A345118 O.g.f.: x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)). %F A345118 E.g.f.: (exp(x)*x*(8 + 3*x) + (-1)^(1/4)*(sinh((-1)^(1/4)*x) - sin((-1)^(1/4)*x)))/2. %F A345118 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4) + 3*a(n-5) - 3*a(n-6) + a(n-7) for n > 6. %F A345118 a(n) = (n*(5 + 3*n) - (1 - (-1)^n)*sin((n-1)*Pi/4))/2. %F A345118 a(n) = A211014(n/2) - A000035(n)*A056594((n-3)/2). %F A345118 a(2*n) = A211014(n). %F A345118 a(k) = A115067(k+1) for k not congruent to 3 mod 4 (A004773). %F A345118 From _Helmut Ruhland_, Jan 29 2024: (Start) %F A345118 For n > 1: a(n) - (2 * A368052(n+2) + A368052(n+3)) * 2 is periodic for n mod 8, i.e. a(n) = (2 * A368052(n+2) + A368052(n+3)) * 2 + f8(n) with %F A345118 n mod 8 = 0 1 2 3 4 5 6 7 %F A345118 f8(n) = 0 0 -3 -2 -2 -2 1 0 (End) %e A345118 Illustrations for n = 1..8: %e A345118 _ _ _ _ _ _ %e A345118 |_| |_|_| |_ _ _| %e A345118 |_ _| |_|_|_| %e A345118 |_ _ _| %e A345118 a(1) = 4 a(2) = 11 a(3) = 20 %e A345118 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A345118 |_ _|_|_| |_ _|_|_ _| |_|_|_ _ _|_| %e A345118 |_|_ _ _| |_|_ _ _|_| |_ _ _|_|_ _| %e A345118 |_ _|_|_| |_ _|_|_ _| |_|_|_ _ _|_| %e A345118 |_|_ _ _| |_|_ _ _|_| |_ _ _|_|_ _| %e A345118 |_ _|_|_ _| |_|_|_ _ _|_| %e A345118 |_ _ _|_|_ _| %e A345118 a(4) = 34 a(5) = 50 a(6) = 69 %e A345118 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A345118 |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| %e A345118 |_ _ _|_|_ _ _| |_|_ _ _|_|_ _ _| %e A345118 |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| %e A345118 |_ _ _|_|_ _ _| |_|_ _ _|_|_ _ _| %e A345118 |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| %e A345118 |_ _ _|_|_ _ _| |_|_ _ _|_|_ _ _| %e A345118 |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| %e A345118 |_|_ _ _|_|_ _ _| %e A345118 a(7) = 92 a(8) = 116 %t A345118 LinearRecurrence[{3,-3,1,-1,3,-3,1},{0,4,11,20,34,50,69},50] %t A345118 a[ n_] := (3*n^2 + 5*n)/2 - (-1)^Floor[n/4]*Boole[Mod[n, 4] == 3]; (* _Michael Somos_, Jan 25 2024 *) %o A345118 (PARI) concat(0, Vec(x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)) + O(x^40))) \\ _Felix Fröhlich_, Jun 09 2021 %o A345118 (PARI) {a(n) = (3*n^2 + 5*n)/2 - (-1)^(n\4)*(n%4==3)}; /* _Michael Somos_, Jan 25 2024 */ %Y A345118 Cf. A000035, A004773, A056594, A115067, A211014, A316316, A316317, A368052. %K A345118 nonn,easy %O A345118 0,2 %A A345118 _Stefano Spezia_, Jun 08 2021