This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345121 #7 Aug 05 2021 15:29:30 %S A345121 34012224,58995000,69190848,71319312,72505152,92853216,94118760, %T A345121 95331816,119095488,119409984,139755888,147545280,150506000,150547032, %U A345121 157464000,159874560,161023680,161350272,164186352,171904032,175986000,176175000,182393856,184909824 %N A345121 Numbers that are the sum of three third powers in ten or more ways. %H A345121 Sean A. Irvine, <a href="/A345121/b345121.txt">Table of n, a(n) for n = 1..3429</a> %e A345121 34012224 is a term because 34012224 = 35^3 + 215^3 + 287^3 = 38^3 + 152^3 + 311^3 = 40^3 + 113^3 + 318^3 = 44^3 + 245^3 + 266^3 = 71^3 + 113^3 + 317^3 = 99^3 + 191^3 + 295^3 = 101^3 + 226^3 + 276^3 = 117^3 + 185^3 + 295^3 = 161^3 + 215^3 + 269^3 = 172^3 + 213^3 + 266^3. %o A345121 (Python) %o A345121 from itertools import combinations_with_replacement as cwr %o A345121 from collections import defaultdict %o A345121 keep = defaultdict(lambda: 0) %o A345121 power_terms = [x**3 for x in range(1, 1000)] %o A345121 for pos in cwr(power_terms, 3): %o A345121 tot = sum(pos) %o A345121 keep[tot] += 1 %o A345121 rets = sorted([k for k, v in keep.items() if v >= 10]) %o A345121 for x in range(len(rets)): %o A345121 print(rets[x]) %Y A345121 Cf. A025338, A344862, A345119, A345122, A345155. %K A345121 nonn %O A345121 1,1 %A A345121 _David Consiglio, Jr._, Jun 08 2021 %E A345121 More terms from _Sean A. Irvine_, Jun 08 2021