This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345125 #30 Sep 16 2021 12:20:15 %S A345125 0,4,3,19,160,1744,644,2529,183296,3763456,4317632,54743776, %T A345125 1013549056,30594128896,35618973952,10392576224,3111643512832, %U A345125 123968232030208,48501417558016,1083228572868608,4080033616887808,188557135970304,3781715948011520 %N A345125 Numerator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))). %C A345125 The limit of a(n)/A345259(n) is Pi. %H A345125 Seiichi Manyama, <a href="/A345125/b345125.txt">Table of n, a(n) for n = 0..1000</a> %H A345125 Frits Beukers, <a href="http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-4-372.pdf">A rational approach to Pi</a>, Nieuw Archief voor de Wiskunde, December 2000, pp. 372-379. %F A345125 a(n)/A345259(n) = 4 * A054765(n)/A012244(n). %e A345125 4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 19. %e A345125 0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ... %t A345125 nmax = 25; Join[{0}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Numerator] (* _Vaclav Kotesovec_, Sep 16 2021 *) %o A345125 (PARI) a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, numerator(4/(1+x)), numerator(x)); \\ _Michel Marcus_, Sep 16 2021 %Y A345125 Cf. A012244, A054765, A054766, A345259 (denominator). %K A345125 nonn,frac %O A345125 0,2 %A A345125 _Seiichi Manyama_, Sep 16 2021