cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345143 Reflection of the concatenation of the previous two terms minus the previous term.

This page as a plain text file.
%I A345143 #22 Jun 11 2021 17:29:50
%S A345143 0,1,9,82,207,70021,11937681,1867379174326,623471971900739499585,
%T A345143 5859949370091168271294333980238096,
%U A345143 6908320893334921728606040790129494417723642675198936230
%N A345143 Reflection of the concatenation of the previous two terms minus the previous term.
%F A345143 a(n) = A004086(a(n-2)||a(n-1)) - a(n-1) for n >= 2, a(n) = n for n <= 1.
%e A345143 a(4) = 207 since 28(9) - 82 = 207.
%p A345143 a:= proc(n) option remember; `if`(n<2, n, (s-> parse(cat(seq(
%p A345143       s[-i], i=1..length(s))))-a(n-1))(cat("", a(n-2), a(n-1))))
%p A345143     end:
%p A345143 seq(a(n), n=0..11);  # _Alois P. Heinz_, Jun 11 2021
%t A345143 a[0] = 0; a[1] = 1; a[n_] := a[n] = FromDigits[Join @@ (Reverse @ IntegerDigits[#] & /@ {a[n - 1], a[n - 2]})] - a[n - 1]; Array[a, 11, 0] (* _Amiram Eldar_, Jun 09 2021 *)
%o A345143 (Python)
%o A345143 def f(v): return int((str(v[-2])+str(v[-1]))[::-1]) - v[-1]
%o A345143 def aupton(nn):
%o A345143     alst = [0, 1]
%o A345143     for n in range(2, nn+1): alst.append(f(alst))
%o A345143     return alst[:nn+1]
%o A345143 print(aupton(10)) # _Michael S. Branicky_, Jun 09 2021
%Y A345143 Cf. A004086, A068109.
%K A345143 nonn,base
%O A345143 0,3
%A A345143 _George Bull_, Jun 09 2021