This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345146 #11 Aug 05 2021 15:27:22 %S A345146 21896,36225,42120,46683,46872,48321,48825,50806,50904,51408,51480, %T A345146 51506,51688,52208,52416,53200,53865,54971,55575,56385,57113,58338, %U A345146 58968,59059,60480,60515,60984,62244,62433,65303,66024,66276,66339,66430,67158,67536,67851 %N A345146 Numbers that are the sum of four third powers in nine or more ways. %H A345146 David Consiglio, Jr., <a href="/A345146/b345146.txt">Table of n, a(n) for n = 1..10000</a> %e A345146 42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3 = 2^3 + 3^3 + 13^3 + 33^3 = 2^3 + 6^3 + 17^3 + 32^3 = 3^3 + 3^3 + 20^3 + 31^3 = 3^3 + 17^3 + 20^3 + 29^3 = 3^3 + 13^3 + 14^3 + 32^3 = 6^3 + 15^3 + 16^3 + 31^3 = 7^3 + 17^3 + 23^3 + 27^3 = 11^3 + 13^3 + 21^3 + 29^3. %o A345146 (Python) %o A345146 from itertools import combinations_with_replacement as cwr %o A345146 from collections import defaultdict %o A345146 keep = defaultdict(lambda: 0) %o A345146 power_terms = [x**3 for x in range(1, 1000)] %o A345146 for pos in cwr(power_terms, 4): %o A345146 tot = sum(pos) %o A345146 keep[tot] += 1 %o A345146 rets = sorted([k for k, v in keep.items() if v >= 9]) %o A345146 for x in range(len(rets)): %o A345146 print(rets[x]) %Y A345146 Cf. A025374, A344926, A345119, A345152, A345154, A345155, A345185. %K A345146 nonn %O A345146 1,1 %A A345146 _David Consiglio, Jr._, Jun 09 2021