This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345148 #7 Aug 05 2021 15:27:26 %S A345148 6883,12411,13104,13923,14112,14581,14896,14904,15561,15876,16317, %T A345148 16640,17208,17479,17992,18739,18865,18928,19035,19080,19376,19665, %U A345148 19712,19763,19880,20007,20384,20755,20979,21203,21231,21420,21707,21896,22409,22617,22743 %N A345148 Numbers that are the sum of four third powers in six or more ways. %H A345148 David Consiglio, Jr., <a href="/A345148/b345148.txt">Table of n, a(n) for n = 1..10000</a> %e A345148 6883 is a term because 6883 = 2^3 + 2^3 + 2^3 + 18^3 = 2^3 + 4^3 + 14^3 + 14^3 = 3^3 + 7^3 + 7^3 + 17^3 = 3^3 + 10^3 + 13^3 + 13^3 = 4^3 + 10^3 + 10^3 + 15^3 = 7^3 + 8^3 + 8^3 + 16^3. %o A345148 (Python) %o A345148 from itertools import combinations_with_replacement as cwr %o A345148 from collections import defaultdict %o A345148 keep = defaultdict(lambda: 0) %o A345148 power_terms = [x**3 for x in range(1, 1000)] %o A345148 for pos in cwr(power_terms, 4): %o A345148 tot = sum(pos) %o A345148 keep[tot] += 1 %o A345148 rets = sorted([k for k, v in keep.items() if v >= 6]) %o A345148 for x in range(len(rets)): %o A345148 print(rets[x]) %Y A345148 Cf. A025371, A343987, A344904, A345083, A345149, A345150, A345174. %K A345148 nonn %O A345148 1,1 %A A345148 _David Consiglio, Jr._, Jun 09 2021