cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345148 Numbers that are the sum of four third powers in six or more ways.

This page as a plain text file.
%I A345148 #7 Aug 05 2021 15:27:26
%S A345148 6883,12411,13104,13923,14112,14581,14896,14904,15561,15876,16317,
%T A345148 16640,17208,17479,17992,18739,18865,18928,19035,19080,19376,19665,
%U A345148 19712,19763,19880,20007,20384,20755,20979,21203,21231,21420,21707,21896,22409,22617,22743
%N A345148 Numbers that are the sum of four third powers in six or more ways.
%H A345148 David Consiglio, Jr., <a href="/A345148/b345148.txt">Table of n, a(n) for n = 1..10000</a>
%e A345148 6883 is a term because 6883 = 2^3 + 2^3 + 2^3 + 18^3  = 2^3 + 4^3 + 14^3 + 14^3  = 3^3 + 7^3 + 7^3 + 17^3  = 3^3 + 10^3 + 13^3 + 13^3  = 4^3 + 10^3 + 10^3 + 15^3  = 7^3 + 8^3 + 8^3 + 16^3.
%o A345148 (Python)
%o A345148 from itertools import combinations_with_replacement as cwr
%o A345148 from collections import defaultdict
%o A345148 keep = defaultdict(lambda: 0)
%o A345148 power_terms = [x**3 for x in range(1, 1000)]
%o A345148 for pos in cwr(power_terms, 4):
%o A345148     tot = sum(pos)
%o A345148     keep[tot] += 1
%o A345148 rets = sorted([k for k, v in keep.items() if v >= 6])
%o A345148 for x in range(len(rets)):
%o A345148     print(rets[x])
%Y A345148 Cf. A025371, A343987, A344904, A345083, A345149, A345150, A345174.
%K A345148 nonn
%O A345148 1,1
%A A345148 _David Consiglio, Jr._, Jun 09 2021