cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345151 Numbers that are the sum of four third powers in exactly seven ways.

This page as a plain text file.
%I A345151 #7 Jul 31 2021 23:29:06
%S A345151 13104,18928,19376,20755,21203,22743,24544,24570,24787,25172,25928,
%T A345151 27755,27846,28917,29582,31031,31248,31528,32858,34056,34713,35289,
%U A345151 35317,35441,35497,35712,36190,36288,36610,36890,36946,38080,39221,39440,39464,39851,39942
%N A345151 Numbers that are the sum of four third powers in exactly seven ways.
%C A345151 Differs from A345150 at term 6 because 21896 = 1^3 + 11^3 + 19^3 + 22^3  = 2^3 + 2^3 + 12^3 + 26^3  = 2^3 + 3^3 + 19^3 + 23^3  = 2^3 + 5^3 + 15^3 + 25^3  = 3^3 + 10^3 + 16^3 + 24^3  = 3^3 + 17^3 + 19^3 + 19^3  = 4^3 + 6^3 + 20^3 + 22^3  = 5^3 + 8^3 + 14^3 + 25^3  = 7^3 + 11^3 + 17^3 + 23^3  = 8^3 + 9^3 + 19^3 + 22^3.
%H A345151 David Consiglio, Jr., <a href="/A345151/b345151.txt">Table of n, a(n) for n = 1..10000</a>
%e A345151 13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3  = 1^3 + 11^3 + 14^3 + 19^3  = 2^3 + 9^3 + 15^3 + 19^3  = 4^3 + 6^3 + 14^3 + 20^3  = 4^3 + 9^3 + 10^3 + 21^3  = 5^3 + 7^3 + 11^3 + 21^3  = 8^3 + 9^3 + 14^3 + 19^3.
%o A345151 (Python)
%o A345151 from itertools import combinations_with_replacement as cwr
%o A345151 from collections import defaultdict
%o A345151 keep = defaultdict(lambda: 0)
%o A345151 power_terms = [x**3 for x in range(1, 1000)]
%o A345151 for pos in cwr(power_terms, 4):
%o A345151     tot = sum(pos)
%o A345151     keep[tot] += 1
%o A345151 rets = sorted([k for k, v in keep.items() if v == 7])
%o A345151 for x in range(len(rets)):
%o A345151     print(rets[x])
%Y A345151 Cf. A025363, A344923, A345085, A345149, A345150, A345153, A345181.
%K A345151 nonn
%O A345151 1,1
%A A345151 _David Consiglio, Jr._, Jun 09 2021