This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345151 #7 Jul 31 2021 23:29:06 %S A345151 13104,18928,19376,20755,21203,22743,24544,24570,24787,25172,25928, %T A345151 27755,27846,28917,29582,31031,31248,31528,32858,34056,34713,35289, %U A345151 35317,35441,35497,35712,36190,36288,36610,36890,36946,38080,39221,39440,39464,39851,39942 %N A345151 Numbers that are the sum of four third powers in exactly seven ways. %C A345151 Differs from A345150 at term 6 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3. %H A345151 David Consiglio, Jr., <a href="/A345151/b345151.txt">Table of n, a(n) for n = 1..10000</a> %e A345151 13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3 = 1^3 + 11^3 + 14^3 + 19^3 = 2^3 + 9^3 + 15^3 + 19^3 = 4^3 + 6^3 + 14^3 + 20^3 = 4^3 + 9^3 + 10^3 + 21^3 = 5^3 + 7^3 + 11^3 + 21^3 = 8^3 + 9^3 + 14^3 + 19^3. %o A345151 (Python) %o A345151 from itertools import combinations_with_replacement as cwr %o A345151 from collections import defaultdict %o A345151 keep = defaultdict(lambda: 0) %o A345151 power_terms = [x**3 for x in range(1, 1000)] %o A345151 for pos in cwr(power_terms, 4): %o A345151 tot = sum(pos) %o A345151 keep[tot] += 1 %o A345151 rets = sorted([k for k, v in keep.items() if v == 7]) %o A345151 for x in range(len(rets)): %o A345151 print(rets[x]) %Y A345151 Cf. A025363, A344923, A345085, A345149, A345150, A345153, A345181. %K A345151 nonn %O A345151 1,1 %A A345151 _David Consiglio, Jr._, Jun 09 2021