This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345152 #7 Aug 05 2021 15:27:33 %S A345152 21896,27720,30429,31339,31402,33579,34624,34776,36162,36225,40105, %T A345152 42120,42695,44037,44163,44226,44947,45162,45675,46277,46683,46872, %U A345152 46900,47600,48321,48825,49042,50112,50689,50806,50904,51058,51408,51480,51506,51597,51688 %N A345152 Numbers that are the sum of four third powers in eight or more ways. %H A345152 David Consiglio, Jr., <a href="/A345152/b345152.txt">Table of n, a(n) for n = 1..10000</a> %e A345152 30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3 = 1^3 + 16^3 + 17^3 + 26^3 = 2^3 + 12^3 + 21^3 + 25^3 = 3^3 + 3^3 + 14^3 + 29^3 = 4^3 + 17^3 + 21^3 + 23^3 = 5^3 + 11^3 + 15^3 + 28^3 = 6^3 + 6^3 + 22^3 + 25^3 = 7^3 + 14^3 + 18^3 + 26^3. %o A345152 (Python) %o A345152 from itertools import combinations_with_replacement as cwr %o A345152 from collections import defaultdict %o A345152 keep = defaultdict(lambda: 0) %o A345152 power_terms = [x**3 for x in range(1, 1000)] %o A345152 for pos in cwr(power_terms, 4): %o A345152 tot = sum(pos) %o A345152 keep[tot] += 1 %o A345152 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A345152 for x in range(len(rets)): %o A345152 print(rets[x]) %Y A345152 Cf. A025373, A344924, A345087, A345146, A345150, A345153, A345183. %K A345152 nonn %O A345152 1,1 %A A345152 _David Consiglio, Jr._, Jun 09 2021