cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345155 Numbers that are the sum of four third powers in ten or more ways.

This page as a plain text file.
%I A345155 #6 Aug 05 2021 15:27:37
%S A345155 21896,36225,46872,48321,48825,51506,52416,53200,55575,58338,58968,
%T A345155 59059,60480,62244,66024,67536,67851,70434,70525,71155,72819,73808,
%U A345155 76384,76923,77896,78624,78912,81081,81991,85995,87507,88641,90181,90783,91448,91728,92008
%N A345155 Numbers that are the sum of four third powers in ten or more ways.
%H A345155 David Consiglio, Jr., <a href="/A345155/b345155.txt">Table of n, a(n) for n = 1..10000</a>
%e A345155 21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3  = 2^3 + 2^3 + 12^3 + 26^3  = 2^3 + 3^3 + 19^3 + 23^3  = 2^3 + 5^3 + 15^3 + 25^3  = 3^3 + 10^3 + 16^3 + 24^3  = 3^3 + 17^3 + 19^3 + 19^3  = 4^3 + 6^3 + 20^3 + 22^3  = 5^3 + 8^3 + 14^3 + 25^3  = 7^3 + 11^3 + 17^3 + 23^3  = 8^3 + 9^3 + 19^3 + 22^3.
%o A345155 (Python)
%o A345155 from itertools import combinations_with_replacement as cwr
%o A345155 from collections import defaultdict
%o A345155 keep = defaultdict(lambda: 0)
%o A345155 power_terms = [x**3 for x in range(1, 1000)]
%o A345155 for pos in cwr(power_terms, 4):
%o A345155     tot = sum(pos)
%o A345155     keep[tot] += 1
%o A345155 rets = sorted([k for k, v in keep.items() if v >= 10])
%o A345155 for x in range(len(rets)):
%o A345155     print(rets[x])
%Y A345155 Cf. A025375, A344928, A345121, A345146, A345156, A345187.
%K A345155 nonn
%O A345155 1,1
%A A345155 _David Consiglio, Jr._, Jun 09 2021