This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345156 #6 Jul 31 2021 23:29:20 %S A345156 21896,36225,48825,51506,52416,53200,58338,58968,60480,66024,67851, %T A345156 70434,70525,71155,72819,76923,78624,78912,85995,87507,88641,90181, %U A345156 90783,91728,93555,97552,98280,98560,99008,99225,99792,100170,103040,104104,104265,104958 %N A345156 Numbers that are the sum of four third powers in exactly ten ways. %C A345156 Differs from A345155 at term 3 because 46872 = 1^3 + 16^3 + 22^3 + 30^3 = 2^3 + 11^3 + 17^3 + 33^3 = 3^3 + 3^3 + 4^3 + 35^3 = 3^3 + 4^3 + 26^3 + 29^3 = 3^3 + 5^3 + 23^3 + 31^3 = 4^3 + 10^3 + 24^3 + 30^3 = 5^3 + 17^3 + 23^3 + 29^3 = 6^3 + 10^3 + 20^3 + 32^3 = 11^3 + 11^3 + 21^3 + 31^3 = 11^3 + 14^3 + 17^3 + 32^3 = 19^3 + 21^3 + 21^3 + 25^3. %H A345156 David Consiglio, Jr., <a href="/A345156/b345156.txt">Table of n, a(n) for n = 1..10000</a> %e A345156 21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3. %o A345156 (Python) %o A345156 from itertools import combinations_with_replacement as cwr %o A345156 from collections import defaultdict %o A345156 keep = defaultdict(lambda: 0) %o A345156 power_terms = [x**3 for x in range(1, 1000)] %o A345156 for pos in cwr(power_terms, 4): %o A345156 tot = sum(pos) %o A345156 keep[tot] += 1 %o A345156 rets = sorted([k for k, v in keep.items() if v == 10]) %o A345156 for x in range(len(rets)): %o A345156 print(rets[x]) %Y A345156 Cf. A025366, A344929, A345122, A345154, A345155, A345188. %K A345156 nonn %O A345156 1,1 %A A345156 _David Consiglio, Jr._, Jun 09 2021