This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345158 #6 Jun 11 2021 04:21:23 %S A345158 1,1,9,0,6,0,2,7,1,6,4,2,6,8,0,7,1,9,1,6,4,3,7,4,1,6,2,5,9,5,9,7,0,3, %T A345158 6,5,0,7,3,9,3,8,3,1,4,7,9,0,4,5,5,3,2,9,1,1,6,6,7,4,1,1,4,3,9,9,3,4, %U A345158 5,0,0,5,5,3,5,9,9,6,3,1,8,2,2,7,5,6,0,0,6,0,6,0,9,7,3,0,7,1,3,1,8,9,3,8,5 %N A345158 Product_{p primes, k>=1} ((p^(2*k + 2) - 1)/(p^(2*k + 2) - p^2))^(1/p^k). %H A345158 Ramanujan's Papers, <a href="https://web.archive.org/web/20200124035942/http://ramanujan.sirinudi.org/Volumes/published/ram17.html">Some formulas in the analytic theory of numbers</a>, Messenger of Mathematics, XLV, 1916, 81-84, Formula (20), constant c. %F A345158 Equals lim_{n->infinity} (A247951(n) / (n!)^2)^(1/n). %e A345158 1.19060271642680719164374162595970365073938314790455329116674114399345... %t A345158 $MaxExtraPrecision = 1000; m = 600; prod = 1; s = 2; Do[Clear[f]; f[p_] := ((p^((k + 1)*s) - 1)/(p^((k + 1)*s) - p^s))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 110]]; Print[prod], {k, 1, 150}] %Y A345158 Cf. A001157, A247951, A345144, A345159. %K A345158 nonn,cons %O A345158 1,3 %A A345158 _Vaclav Kotesovec_, Jun 10 2021