This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345159 #9 Jun 11 2021 04:21:15 %S A345159 1,0,8,0,0,2,3,0,5,0,2,4,7,2,0,5,3,5,8,4,2,7,9,1,6,9,4,3,6,9,1,7,6,2, %T A345159 3,2,1,4,2,4,0,0,8,8,9,2,2,3,7,8,2,2,6,9,8,6,7,4,3,4,7,5,5,1,3,7,5,6, %U A345159 4,8,0,1,7,0,7,1,6,5,8,0,2,2,2,9,3,5,3,8,7,8,1,1,1,7,0,6,2,3,8,1,1,3,6,4,4 %N A345159 Product_{p primes, k>=1} ((p^(3*k + 3) - 1)/(p^(3*k + 3) - p^3))^(1/p^k). %H A345159 Ramanujan's Papers, <a href="https://web.archive.org/web/20200124035942/http://ramanujan.sirinudi.org/Volumes/published/ram17.html">Some formulas in the analytic theory of numbers</a>, Messenger of Mathematics, XLV, 1916, 81-84, Formula (20), constant c. %F A345159 Equals lim_{n->infinity} (A345160(n) / (n!)^3)^(1/n). %e A345159 1.080023050247205358427916943691762321424008892237822698674347551375648... %t A345159 $MaxExtraPrecision = 1000; m = 600; prod = 1; s = 3; Do[Clear[f]; f[p_] := ((p^((k + 1)*s) - 1)/(p^((k + 1)*s) - p^s))^(1/p^k); cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x, m + 1]]; prod *= f[2]*Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 110]]; Print[prod], {k, 1, 100}] %Y A345159 Cf. A001158, A345160, A345144, A345158. %K A345159 nonn,cons %O A345159 1,3 %A A345159 _Vaclav Kotesovec_, Jun 10 2021