This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345165 #22 Sep 06 2023 13:24:17 %S A345165 0,0,1,1,2,2,5,5,8,11,17,20,29,37,51,65,85,106,141,175,223,277,351, %T A345165 432,540,663,820,999,1226,1489,1817,2192,2654,3191,3847,4603,5517, %U A345165 6578,7853,9327,11084,13120,15533,18328,21621,25430,29905,35071,41111,48080,56206,65554,76420,88918 %N A345165 Number of integer partitions of n without an alternating permutation. %C A345165 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). %H A345165 Joseph Likar, <a href="/A345165/b345165.txt">Table of n, a(n) for n = 0..1000</a> %H A345165 Joseph Likar, <a href="/A345165/a345165.java.txt">Java Implementation</a> using QBinomials %e A345165 The a(2) = 1 through a(9) = 11 partitions: %e A345165 (11) (111) (22) (2111) (33) (2221) (44) (333) %e A345165 (1111) (11111) (222) (4111) (2222) (3222) %e A345165 (3111) (31111) (5111) (6111) %e A345165 (21111) (211111) (41111) (22221) %e A345165 (111111) (1111111) (221111) (51111) %e A345165 (311111) (321111) %e A345165 (2111111) (411111) %e A345165 (11111111) (2211111) %e A345165 (3111111) %e A345165 (21111111) %e A345165 (111111111) %t A345165 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; %t A345165 Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]=={}&]],{n,0,15}] %Y A345165 Excluding twins (x,x) gives A344654, complement A344740. %Y A345165 The normal case is A345162, complement A345163. %Y A345165 The complement is counted by A345170, ranked by A345172. %Y A345165 The Heinz numbers of these partitions are A345171. %Y A345165 The version for factorizations is A348380, complement A348379. %Y A345165 A version for ordered factorizations is A348613, complement A348610. %Y A345165 A000041 counts integer partitions. %Y A345165 A001250 counts alternating permutations, complement A348615. %Y A345165 A003242 counts anti-run compositions. %Y A345165 A005649 counts anti-run patterns. %Y A345165 A025047 counts alternating or wiggly compositions. %Y A345165 A325534 counts separable partitions, ranked by A335433. %Y A345165 A325535 counts inseparable partitions, ranked by A335448. %Y A345165 A344604 counts alternating compositions with twins. %Y A345165 A345164 counts alternating permutations of prime indices, w/ twins A344606. %Y A345165 A345192 counts non-alternating compositions, without twins A348377. %Y A345165 Cf. A000070, A025048, A025049, A103919, A335126, A344605, A344607, A344615, A344653, A345166, A345167, A345168, A345169, A347706, A348609. %K A345165 nonn %O A345165 0,5 %A A345165 _Gus Wiseman_, Jun 12 2021 %E A345165 a(26) onwards by _Joseph Likar_, Aug 21 2023