This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345170 #27 Sep 06 2023 01:39:39 %S A345170 1,1,1,2,3,5,6,10,14,19,25,36,48,64,84,111,146,191,244,315,404,515, %T A345170 651,823,1035,1295,1616,2011,2492,3076,3787,4650,5695,6952,8463,10280, %U A345170 12460,15059,18162,21858,26254,31463,37641,44933,53554,63704,75653,89683,106162,125445,148020 %N A345170 Number of integer partitions of n with an alternating permutation. %C A345170 First differs from A325534 at a(10) = 25, A325534(10) = 26. The first separable partition without an alternating permutation is (3,2,2,2,1). %C A345170 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2). %H A345170 Joseph Likar, <a href="/A345170/b345170.txt">Table of n, a(n) for n = 0..1000</a> %e A345170 The a(1) = 1 through a(8) = 14 partitions: %e A345170 (1) (2) (3) (4) (5) (6) (7) (8) %e A345170 (21) (31) (32) (42) (43) (53) %e A345170 (211) (41) (51) (52) (62) %e A345170 (221) (321) (61) (71) %e A345170 (311) (411) (322) (332) %e A345170 (2211) (331) (422) %e A345170 (421) (431) %e A345170 (511) (521) %e A345170 (3211) (611) %e A345170 (22111) (3221) %e A345170 (3311) %e A345170 (4211) %e A345170 (22211) %e A345170 (32111) %t A345170 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; %t A345170 Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]!={}&]],{n,0,15}] %Y A345170 Includes all strict partitions A000009. %Y A345170 Including twins (x,x) gives A344740. %Y A345170 The normal case is A345163 (complement: A345162). %Y A345170 The complement is counted by A345165, ranked by A345171. %Y A345170 The Heinz numbers of these partitions are A345172. %Y A345170 The version for factorizations is A348379. %Y A345170 A000041 counts integer partitions. %Y A345170 A001250 counts alternating permutations. %Y A345170 A003242 counts anti-run compositions. %Y A345170 A005649 counts anti-run patterns. %Y A345170 A025047 counts alternating compositions (ascend: A025048, descend: A025049). %Y A345170 A325534 counts separable partitions, ranked by A335433. %Y A345170 A325535 counts inseparable partitions, ranked by A335448. %Y A345170 A344604 counts alternating compositions with twins. %Y A345170 Cf. A000070, A103919, A335126, A344605, A344653, A344654, A344742, A345164, A345166, A345167, A345168, A345195. %K A345170 nonn %O A345170 0,4 %A A345170 _Gus Wiseman_, Jun 13 2021 %E A345170 a(26)-a(32) from _Robert Price_, Jun 23 2021 %E A345170 a(33)-a(48) from _Alois P. Heinz_, Jun 23 2021 %E A345170 a(49) onwards from _Joseph Likar_, Sep 05 2023