cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345171 Numbers whose multiset of prime factors has no alternating permutation.

This page as a plain text file.
%I A345171 #10 Nov 05 2021 22:18:10
%S A345171 4,8,9,16,24,25,27,32,40,48,49,54,56,64,80,81,88,96,104,112,121,125,
%T A345171 128,135,136,144,152,160,162,169,176,184,189,192,208,224,232,240,243,
%U A345171 248,250,256,270,272,288,289,296,297,304,320,324,328,336,343,344,351
%N A345171 Numbers whose multiset of prime factors has no alternating permutation.
%C A345171 First differs from A335448 in having 270.
%C A345171 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
%C A345171 Also Heinz numbers of integer partitions without a wiggly permutation, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A345171 The sequence of terms together with their prime indices begins:
%e A345171     4: {1,1}
%e A345171     8: {1,1,1}
%e A345171     9: {2,2}
%e A345171    16: {1,1,1,1}
%e A345171    24: {1,1,1,2}
%e A345171    25: {3,3}
%e A345171    27: {2,2,2}
%e A345171    32: {1,1,1,1,1}
%e A345171    40: {1,1,1,3}
%e A345171    48: {1,1,1,1,2}
%e A345171    49: {4,4}
%e A345171    54: {1,2,2,2}
%e A345171    56: {1,1,1,4}
%e A345171    64: {1,1,1,1,1,1}
%e A345171    80: {1,1,1,1,3}
%e A345171    81: {2,2,2,2}
%e A345171    88: {1,1,1,5}
%e A345171    96: {1,1,1,1,1,2}
%t A345171 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
%t A345171 Select[Range[100],Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[#]]],wigQ]=={}&]
%Y A345171 Removing squares of primes A001248 gives A344653, counted by A344654.
%Y A345171 A superset of A335448, which is counted by A325535.
%Y A345171 Positions of 0's in A345164.
%Y A345171 The partitions with these Heinz numbers are counted by A345165.
%Y A345171 The complement is A345172, counted by A345170.
%Y A345171 The separable case is A345173, counted by A345166.
%Y A345171 A001250 counts alternating permutations, complement A348615.
%Y A345171 A003242 counts anti-run compositions, complement A261983.
%Y A345171 A025047 counts alternating or wiggly compositions, directed A025048, A025049.
%Y A345171 A325534 counts separable partitions, ranked by A335433.
%Y A345171 A344606 counts alternating permutations of prime indices with twins.
%Y A345171 A344742 ranks twins and partitions with an alternating permutation.
%Y A345171 A345192 counts non-alternating compositions.
%Y A345171 Cf. A001222, A071321, A071322, A316523, A316524, A335126, A344604, A344616, A344652, A344740, A345163, A345168, A345193, A345195, A348380, A348609.
%K A345171 nonn
%O A345171 1,1
%A A345171 _Gus Wiseman_, Jun 13 2021