cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345172 Numbers whose multiset of prime factors has an alternating permutation.

This page as a plain text file.
%I A345172 #15 Nov 08 2021 04:24:43
%S A345172 1,2,3,5,6,7,10,11,12,13,14,15,17,18,19,20,21,22,23,26,28,29,30,31,33,
%T A345172 34,35,36,37,38,39,41,42,43,44,45,46,47,50,51,52,53,55,57,58,59,60,61,
%U A345172 62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,82,83
%N A345172 Numbers whose multiset of prime factors has an alternating permutation.
%C A345172 First differs from A212167 in containing 72.
%C A345172 First differs from A335433 in lacking 270, corresponding to the partition (3,2,2,2,1).
%C A345172 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
%C A345172 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A345172 Complement of A001248 (squares of primes) in A344742.
%e A345172 The sequence of terms together with their prime indices begins:
%e A345172       1: {}          20: {1,1,3}       39: {2,6}
%e A345172       2: {1}         21: {2,4}         41: {13}
%e A345172       3: {2}         22: {1,5}         42: {1,2,4}
%e A345172       5: {3}         23: {9}           43: {14}
%e A345172       6: {1,2}       26: {1,6}         44: {1,1,5}
%e A345172       7: {4}         28: {1,1,4}       45: {2,2,3}
%e A345172      10: {1,3}       29: {10}          46: {1,9}
%e A345172      11: {5}         30: {1,2,3}       47: {15}
%e A345172      12: {1,1,2}     31: {11}          50: {1,3,3}
%e A345172      13: {6}         33: {2,5}         51: {2,7}
%e A345172      14: {1,4}       34: {1,7}         52: {1,1,6}
%e A345172      15: {2,3}       35: {3,4}         53: {16}
%e A345172      17: {7}         36: {1,1,2,2}     55: {3,5}
%e A345172      18: {1,2,2}     37: {12}          57: {2,8}
%e A345172      19: {8}         38: {1,8}         58: {1,10}
%t A345172 wigQ[y_]:=Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1;
%t A345172 Select[Range[100],Select[Permutations[ Flatten[ConstantArray@@@FactorInteger[#]]],wigQ[#]&]!={}&]
%Y A345172 Including squares of primes A001248 gives A344742, counted by A344740.
%Y A345172 This is a subset of A335433, which is counted by A325534.
%Y A345172 Positions of nonzero terms in A345164.
%Y A345172 The partitions with these Heinz numbers are counted by A345170.
%Y A345172 The complement is A345171, which is counted by A345165.
%Y A345172 A345173 = A345171 /\ A335433 is counted by A345166.
%Y A345172 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
%Y A345172 A001250 counts alternating permutations.
%Y A345172 A003242 counts anti-run compositions.
%Y A345172 A025047 counts alternating or wiggly compositions, also A025048, A025049.
%Y A345172 A325535 counts inseparable partitions, ranked by A335448.
%Y A345172 A344604 counts alternating compositions with twins.
%Y A345172 A344606 counts alternating permutations of prime indices with twins.
%Y A345172 A345192 counts non-alternating compositions.
%Y A345172 Cf. A001222, A071321, A071322, A316523, A316524, A335126, A344605, A344614, A344616, A344653, A344654, A345163, A345167, A347706, A348379.
%K A345172 nonn
%O A345172 1,2
%A A345172 _Gus Wiseman_, Jun 13 2021