cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation.

This page as a plain text file.
%I A345173 #12 Nov 05 2021 22:20:16
%S A345173 270,378,594,702,918,1026,1242,1566,1620,1674,1750,1998,2214,2268,
%T A345173 2322,2538,2625,2750,2862,3186,3250,3294,3564,3618,3834,3942,4050,
%U A345173 4125,4212,4250,4266,4482,4750,4806,4875,5238,5454,5508,5562,5670,5750,5778,5886,6102
%N A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation.
%C A345173 A multiset is separable if it has an anti-run permutation (no adjacent parts equal).
%C A345173 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
%C A345173 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A345173 Equals A345171 /\ A335433.
%e A345173 The terms together with their prime indices begin:
%e A345173    270: {1,2,2,2,3}
%e A345173    378: {1,2,2,2,4}
%e A345173    594: {1,2,2,2,5}
%e A345173    702: {1,2,2,2,6}
%e A345173    918: {1,2,2,2,7}
%e A345173   1026: {1,2,2,2,8}
%e A345173   1242: {1,2,2,2,9}
%e A345173   1566: {1,2,2,2,10}
%e A345173   1620: {1,1,2,2,2,2,3}
%e A345173   1674: {1,2,2,2,11}
%e A345173   1750: {1,3,3,3,4}
%e A345173   1998: {1,2,2,2,12}
%e A345173   2214: {1,2,2,2,13}
%e A345173   2268: {1,1,2,2,2,2,4}
%e A345173   2322: {1,2,2,2,14}
%t A345173 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A345173 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
%t A345173 sepQ[y_]:=!MatchQ[y,{___,x_,x_,___}];
%t A345173 Select[Range[1000],Select[Permutations[primeMS[#]],wigQ]=={}&&!Select[Permutations[primeMS[#]],sepQ]=={}&]
%Y A345173 The partitions with these Heinz numbers are counted by A345166.
%Y A345173 Permutations of this type are ranked by A345169.
%Y A345173 Numbers with a factorization of this type are counted by A348609.
%Y A345173 A000041 counts integer partitions.
%Y A345173 A001250 counts alternating permutations, complement A348615.
%Y A345173 A003242 counts anti-run compositions.
%Y A345173 A025047 counts alternating compositions, ascend A025048, descend A025049.
%Y A345173 A325534 counts separable partitions, ranked by A335433.
%Y A345173 A325535 counts inseparable partitions, ranked by A335448.
%Y A345173 A344606 counts alternating permutations of prime indices with twins.
%Y A345173 A344740 counts twins and partitions with an alternating permutation.
%Y A345173 A345164 counts alternating permutations of prime factors.
%Y A345173 A345165 counts partitions without an alternating permutation.
%Y A345173 A345170 counts partitions with an alternating permutation.
%Y A345173 A345192 counts non-alternating compositions, without twins A348377.
%Y A345173 A348379 counts factorizations with an alternating permutation.
%Y A345173 Cf. A001222, A071321, A316524, A335126, A344614, A344616, A344652, A344653, A345163, A345168, A345193, A347706, A348380, A348613.
%K A345173 nonn
%O A345173 1,1
%A A345173 _Gus Wiseman_, Jun 13 2021