This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345173 #12 Nov 05 2021 22:20:16 %S A345173 270,378,594,702,918,1026,1242,1566,1620,1674,1750,1998,2214,2268, %T A345173 2322,2538,2625,2750,2862,3186,3250,3294,3564,3618,3834,3942,4050, %U A345173 4125,4212,4250,4266,4482,4750,4806,4875,5238,5454,5508,5562,5670,5750,5778,5886,6102 %N A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation. %C A345173 A multiset is separable if it has an anti-run permutation (no adjacent parts equal). %C A345173 A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). %C A345173 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A345173 Equals A345171 /\ A335433. %e A345173 The terms together with their prime indices begin: %e A345173 270: {1,2,2,2,3} %e A345173 378: {1,2,2,2,4} %e A345173 594: {1,2,2,2,5} %e A345173 702: {1,2,2,2,6} %e A345173 918: {1,2,2,2,7} %e A345173 1026: {1,2,2,2,8} %e A345173 1242: {1,2,2,2,9} %e A345173 1566: {1,2,2,2,10} %e A345173 1620: {1,1,2,2,2,2,3} %e A345173 1674: {1,2,2,2,11} %e A345173 1750: {1,3,3,3,4} %e A345173 1998: {1,2,2,2,12} %e A345173 2214: {1,2,2,2,13} %e A345173 2268: {1,1,2,2,2,2,4} %e A345173 2322: {1,2,2,2,14} %t A345173 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A345173 wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1]; %t A345173 sepQ[y_]:=!MatchQ[y,{___,x_,x_,___}]; %t A345173 Select[Range[1000],Select[Permutations[primeMS[#]],wigQ]=={}&&!Select[Permutations[primeMS[#]],sepQ]=={}&] %Y A345173 The partitions with these Heinz numbers are counted by A345166. %Y A345173 Permutations of this type are ranked by A345169. %Y A345173 Numbers with a factorization of this type are counted by A348609. %Y A345173 A000041 counts integer partitions. %Y A345173 A001250 counts alternating permutations, complement A348615. %Y A345173 A003242 counts anti-run compositions. %Y A345173 A025047 counts alternating compositions, ascend A025048, descend A025049. %Y A345173 A325534 counts separable partitions, ranked by A335433. %Y A345173 A325535 counts inseparable partitions, ranked by A335448. %Y A345173 A344606 counts alternating permutations of prime indices with twins. %Y A345173 A344740 counts twins and partitions with an alternating permutation. %Y A345173 A345164 counts alternating permutations of prime factors. %Y A345173 A345165 counts partitions without an alternating permutation. %Y A345173 A345170 counts partitions with an alternating permutation. %Y A345173 A345192 counts non-alternating compositions, without twins A348377. %Y A345173 A348379 counts factorizations with an alternating permutation. %Y A345173 Cf. A001222, A071321, A316524, A335126, A344614, A344616, A344652, A344653, A345163, A345168, A345193, A347706, A348380, A348613. %K A345173 nonn %O A345173 1,1 %A A345173 _Gus Wiseman_, Jun 13 2021