cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345175 Numbers that are the sum of five third powers in exactly six ways.

This page as a plain text file.
%I A345175 #6 Jul 31 2021 23:16:42
%S A345175 2430,2979,3214,3249,3312,3492,3520,3737,3753,3788,3816,3842,3942,
%T A345175 3968,4121,4185,4213,4267,4355,4411,4418,4446,4453,4456,4465,4482,
%U A345175 4509,4563,4626,4663,4670,4723,4753,4896,4905,4924,4938,4941,4950,4960,4976,4987,4994
%N A345175 Numbers that are the sum of five third powers in exactly six ways.
%C A345175 Differs from A345174 at term 20 because 4392 = 1^3 + 1^3 + 10^3 + 10^3 + 11^3  = 1^3 + 2^3 + 2^3 + 9^3 + 14^3  = 1^3 + 8^3 + 9^3 + 10^3 + 10^3  = 2^3 + 2^3 + 3^3 + 5^3 + 15^3  = 2^3 + 3^3 + 5^3 + 8^3 + 14^3  = 2^3 + 8^3 + 8^3 + 8^3 + 12^3  = 3^3 + 6^3 + 7^3 + 8^3 + 13^3  = 5^3 + 5^3 + 5^3 + 9^3 + 13^3.
%H A345175 David Consiglio, Jr., <a href="/A345175/b345175.txt">Table of n, a(n) for n = 1..10000</a>
%e A345175 2430 is a term because 2430 = 1^3 + 2^3 + 2^3 + 5^3 + 12^3  = 1^3 + 3^3 + 4^3 + 7^3 + 11^3  = 2^3 + 2^3 + 6^3 + 6^3 + 11^3  = 2^3 + 3^3 + 3^3 + 9^3 + 10^3  = 3^3 + 5^3 + 8^3 + 8^3 + 8^3  = 3^3 + 4^3 + 7^3 + 8^3 + 9^3.
%o A345175 (Python)
%o A345175 from itertools import combinations_with_replacement as cwr
%o A345175 from collections import defaultdict
%o A345175 keep = defaultdict(lambda: 0)
%o A345175 power_terms = [x**3 for x in range(1, 1000)]
%o A345175 for pos in cwr(power_terms, 5):
%o A345175     tot = sum(pos)
%o A345175     keep[tot] += 1
%o A345175 rets = sorted([k for k, v in keep.items() if v == 6])
%o A345175 for x in range(len(rets)):
%o A345175     print(rets[x])
%Y A345175 Cf. A294740, A343988, A344941, A345149, A345174, A345181, A345768.
%K A345175 nonn
%O A345175 1,1
%A A345175 _David Consiglio, Jr._, Jun 10 2021