This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345175 #6 Jul 31 2021 23:16:42 %S A345175 2430,2979,3214,3249,3312,3492,3520,3737,3753,3788,3816,3842,3942, %T A345175 3968,4121,4185,4213,4267,4355,4411,4418,4446,4453,4456,4465,4482, %U A345175 4509,4563,4626,4663,4670,4723,4753,4896,4905,4924,4938,4941,4950,4960,4976,4987,4994 %N A345175 Numbers that are the sum of five third powers in exactly six ways. %C A345175 Differs from A345174 at term 20 because 4392 = 1^3 + 1^3 + 10^3 + 10^3 + 11^3 = 1^3 + 2^3 + 2^3 + 9^3 + 14^3 = 1^3 + 8^3 + 9^3 + 10^3 + 10^3 = 2^3 + 2^3 + 3^3 + 5^3 + 15^3 = 2^3 + 3^3 + 5^3 + 8^3 + 14^3 = 2^3 + 8^3 + 8^3 + 8^3 + 12^3 = 3^3 + 6^3 + 7^3 + 8^3 + 13^3 = 5^3 + 5^3 + 5^3 + 9^3 + 13^3. %H A345175 David Consiglio, Jr., <a href="/A345175/b345175.txt">Table of n, a(n) for n = 1..10000</a> %e A345175 2430 is a term because 2430 = 1^3 + 2^3 + 2^3 + 5^3 + 12^3 = 1^3 + 3^3 + 4^3 + 7^3 + 11^3 = 2^3 + 2^3 + 6^3 + 6^3 + 11^3 = 2^3 + 3^3 + 3^3 + 9^3 + 10^3 = 3^3 + 5^3 + 8^3 + 8^3 + 8^3 = 3^3 + 4^3 + 7^3 + 8^3 + 9^3. %o A345175 (Python) %o A345175 from itertools import combinations_with_replacement as cwr %o A345175 from collections import defaultdict %o A345175 keep = defaultdict(lambda: 0) %o A345175 power_terms = [x**3 for x in range(1, 1000)] %o A345175 for pos in cwr(power_terms, 5): %o A345175 tot = sum(pos) %o A345175 keep[tot] += 1 %o A345175 rets = sorted([k for k, v in keep.items() if v == 6]) %o A345175 for x in range(len(rets)): %o A345175 print(rets[x]) %Y A345175 Cf. A294740, A343988, A344941, A345149, A345174, A345181, A345768. %K A345175 nonn %O A345175 1,1 %A A345175 _David Consiglio, Jr._, Jun 10 2021