cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345181 Numbers that are the sum of five third powers in exactly seven ways.

This page as a plain text file.
%I A345181 #7 Jul 31 2021 23:16:46
%S A345181 4472,4544,4600,4957,5076,5113,5120,5132,5165,5174,5347,5354,5384,
%T A345181 5391,5410,5445,5474,5481,5507,5543,5617,5715,5760,5834,5895,5923,
%U A345181 5984,5986,6049,6128,6131,6245,6280,6373,6407,6434,6436,6544,6553,6733,6768,6831,6840
%N A345181 Numbers that are the sum of five third powers in exactly seven ways.
%C A345181 Differs from A345180 at term 1 because 4392 = 1^3 + 1^3 + 10^3 + 10^3 + 11^3  = 1^3 + 2^3 + 2^3 + 9^3 + 14^3  = 1^3 + 8^3 + 9^3 + 10^3 + 10^3  = 2^3 + 2^3 + 3^3 + 5^3 + 15^3  = 2^3 + 3^3 + 5^3 + 8^3 + 14^3  = 2^3 + 8^3 + 8^3 + 8^3 + 12^3  = 3^3 + 6^3 + 7^3 + 8^3 + 13^3  = 5^3 + 5^3 + 5^3 + 9^3 + 13^3.
%H A345181 David Consiglio, Jr., <a href="/A345181/b345181.txt">Table of n, a(n) for n = 1..10000</a>
%e A345181 4472 is a term because 4472 = 1^3 + 4^3 + 4^3 + 4^3 + 15^3  = 2^3 + 2^3 + 9^3 + 11^3 + 11^3  = 2^3 + 3^3 + 4^3 + 5^3 + 15^3  = 2^3 + 3^3 + 7^3 + 11^3 + 12^3  = 3^3 + 3^3 + 6^3 + 10^3 + 13^3  = 3^3 + 4^3 + 5^3 + 8^3 + 14^3  = 5^3 + 5^3 + 7^3 + 10^3 + 12^3.
%o A345181 (Python)
%o A345181 from itertools import combinations_with_replacement as cwr
%o A345181 from collections import defaultdict
%o A345181 keep = defaultdict(lambda: 0)
%o A345181 power_terms = [x**3 for x in range(1, 1000)]
%o A345181 for pos in cwr(power_terms, 5):
%o A345181     tot = sum(pos)
%o A345181     keep[tot] += 1
%o A345181 rets = sorted([k for k, v in keep.items() if v == 7])
%o A345181 for x in range(len(rets)):
%o A345181     print(rets[x])
%Y A345181 Cf. A294741, A344943, A345151, A345175, A345180, A345184, A345769.
%K A345181 nonn
%O A345181 1,1
%A A345181 _David Consiglio, Jr._, Jun 10 2021