This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345184 #6 Jul 31 2021 23:16:49 %S A345184 4392,4915,5139,5256,5321,5624,5643,5678,5741,5769,5797,5832,5914, %T A345184 6075,6202,6499,6560,6616,6642,6677,6833,6884,7008,7111,7128,7155, %U A345184 7218,7344,7395,7641,7696,7729,7785,7813,7820,7849,7883,8037,8100,8243,8282,8308,8315 %N A345184 Numbers that are the sum of five third powers in exactly eight ways. %C A345184 Differs from A345183 at term 13 because 5860 = 1^3 + 1^3 + 5^3 + 8^3 + 16^3 = 1^3 + 2^3 + 3^3 + 11^3 + 15^3 = 1^3 + 3^3 + 8^3 + 11^3 + 14^3 = 1^3 + 5^3 + 5^3 + 10^3 + 15^3 = 1^3 + 9^3 + 10^3 + 10^3 + 12^3 = 2^3 + 3^3 + 8^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 12^3 + 14^3 = 2^3 + 8^3 + 8^3 + 12^3 + 12^3 = 3^3 + 8^3 + 8^3 + 9^3 + 14^3 = 3^3 + 6^3 + 7^3 + 12^3 + 13^3. %H A345184 David Consiglio, Jr., <a href="/A345184/b345184.txt">Table of n, a(n) for n = 1..10000</a> %e A345184 4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3 = 1^3 + 3^3 + 7^3 + 9^3 + 14^3 = 1^3 + 8^3 + 8^3 + 11^3 + 11^3 = 2^3 + 4^3 + 6^3 + 6^3 + 15^3 = 3^3 + 3^3 + 5^3 + 7^3 + 15^3 = 3^3 + 3^3 + 10^3 + 11^3 + 11^3 = 4^3 + 6^3 + 6^3 + 8^3 + 14^3 = 8^3 + 8^3 + 8^3 + 9^3 + 11^3. %o A345184 (Python) %o A345184 from itertools import combinations_with_replacement as cwr %o A345184 from collections import defaultdict %o A345184 keep = defaultdict(lambda: 0) %o A345184 power_terms = [x**3 for x in range(1, 1000)] %o A345184 for pos in cwr(power_terms, 5): %o A345184 tot = sum(pos) %o A345184 keep[tot] += 1 %o A345184 rets = sorted([k for k, v in keep.items() if v == 8]) %o A345184 for x in range(len(rets)): %o A345184 print(rets[x]) %Y A345184 Cf. A294742, A344945, A345153, A345181, A345183, A345186, A345770. %K A345184 nonn %O A345184 1,1 %A A345184 _David Consiglio, Jr._, Jun 10 2021