cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345189 Number of rows with the value "false" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.

This page as a plain text file.
%I A345189 #10 May 21 2022 08:28:57
%S A345189 1,1,6,41,330,2882,26604,255313,2521986,25473638,261898548,2731724778,
%T A345189 28836047844,307477681188,3306988334808,35833139582529,
%U A345189 390803960909106,4286644113507902,47258491871201508,523372307883323566,5819831138546794860,64954314678710555612,727371707764232349672
%N A345189 Number of rows with the value "false" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.
%H A345189 G. C. Greubel, <a href="/A345189/b345189.txt">Table of n, a(n) for n = 1..925</a>
%H A345189 Volkan Yildiz, <a href="https://arxiv.org/abs/2106.04728">Notes on algebraic structure of truth tables of bracketed formulae connected by implications</a>, arXiv:2106.04728 [math.CO], 2021.
%F A345189 G.f.: (-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6.
%F A345189 a(n) = 2*A005159(n-1) - A345190(n). - _G. C. Greubel_, May 20 2022
%t A345189 CoefficientList[Series[(-2 -Sqrt[1-12*x] +Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* _G. C. Greubel_, May 20 2022 *)
%o A345189 (PARI)  my(x='x+O('x^30)); Vec((-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6)
%o A345189 (SageMath)
%o A345189 def A345189_list(prec):
%o A345189     P.<x> = PowerSeriesRing(ZZ, prec)
%o A345189     return P( (-2-sqrt(1-12*x)+sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
%o A345189 a=A345189_list(40); a[1:] # _G. C. Greubel_, May 20 2022
%Y A345189 Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345190 (true rows).
%K A345189 nonn
%O A345189 1,3
%A A345189 _Michel Marcus_, Jun 10 2021