cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345190 Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.

This page as a plain text file.
%I A345190 #9 May 21 2022 08:29:25
%S A345190 1,5,30,229,1938,17530,165852,1621133,16242474,165923854,1721675460,
%T A345190 18095802306,192256162740,2061367432212,22276538889912,
%U A345190 242387718986301,2653259550491034,29198054511893638,322835545567447092,3584671507685675894,39955514234936341980,446897274497509974508
%N A345190 Number of rows with the value "true" in the Kleene truth tables of all bracketed formulae with n distinct propositions p1, ..., pn connected by the binary connective of implication.
%H A345190 G. C. Greubel, <a href="/A345190/b345190.txt">Table of n, a(n) for n = 1..925</a>
%H A345190 Volkan Yildiz, <a href="https://arxiv.org/abs/2106.04728">Notes on algebraic structure of truth tables of bracketed formulae connected by implications</a>, arXiv:2106.04728 [math.CO], 2021.
%F A345190 G.f.: (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6.
%F A345190 a(n) = 2*A005159(n-1) - A345189(n). - _G. C. Greubel_, May 20 2022
%t A345190 CoefficientList[Series[(4 -Sqrt[1-12*x] -Sqrt[5 +24*x +4*Sqrt[1-12*x]])/6, {x, 0, 40}], x]//Rest (* _G. C. Greubel_, May 20 2022 *)
%o A345190 (PARI) my(x='x+O('x^30)); Vec((4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6)
%o A345190 (SageMath)
%o A345190 def A345190_list(prec):
%o A345190     P.<x> = PowerSeriesRing(ZZ, prec)
%o A345190     return P( (4-sqrt(1-12*x)-sqrt(5+24*x+4*sqrt(1-12*x)))/6 ).list()
%o A345190 a=A345190_list(40); a[1:] # _G. C. Greubel_, May 20 2022
%Y A345190 Cf. A005159 (unknown rows, shifted), A025226 (all rows), A345189 (false rows).
%K A345190 nonn
%O A345190 1,2
%A A345190 _Michel Marcus_, Jun 10 2021