This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345196 #8 Jun 27 2021 07:52:21 %S A345196 1,1,0,1,1,1,1,3,4,4,4,8,11,11,11,20,27,29,31,48,65,70,74,109,145,160, %T A345196 172,238,314,345,372,500,649,721,782,1019,1307,1451,1577,2015,2552, %U A345196 2841,3098,3885,4867,5418,5914,7318,9071,10109,11050 %N A345196 Number of integer partitions of n with reverse-alternating sum equal to the reverse-alternating sum of their conjugate. %C A345196 The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. By conjugation, this is also (-1)^(r-1) times the number of odd parts, where r is the greatest part. So a(n) is the number of integer partitions of n of even rank with the same number of odd parts as their conjugate. %e A345196 The a(5) = 1 through a(12) = 11 partitions: %e A345196 (311) (321) (43) (44) (333) (541) (65) (66) %e A345196 (2221) (332) (531) (4321) (4322) (552) %e A345196 (4111) (2222) (32211) (32221) (4331) (4332) %e A345196 (4211) (51111) (52111) (4421) (4422) %e A345196 (6311) (4431) %e A345196 (222221) (6411) %e A345196 (422111) (33222) %e A345196 (611111) (53211) %e A345196 (222222) %e A345196 (422211) %e A345196 (621111) %t A345196 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A345196 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A345196 Table[Length[Select[IntegerPartitions[n],sats[#]==sats[conj[#]]&]],{n,0,15}] %Y A345196 The non-reverse version is A277103. %Y A345196 Comparing even parts to odd conjugate parts gives A277579. %Y A345196 Comparing signs only gives A340601. %Y A345196 A000041 counts partitions of 2n with alternating sum 0, ranked by A000290. %Y A345196 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A345196 A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741). %Y A345196 A124754 gives alternating sums of standard compositions (reverse: A344618). %Y A345196 A316524 is the alternating sum of the prime indices of n (reverse: A344616). %Y A345196 A325534 counts separable partitions, ranked by A335433. %Y A345196 A325535 counts inseparable partitions, ranked by A335448. %Y A345196 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A345196 A344611 counts partitions of 2n with reverse-alternating sum >= 0. %Y A345196 Cf. A000070, A000097, A006330, A027187, A027193, A236559, A239829, A257991, A344607, A344608, A344651, A344654. %K A345196 nonn %O A345196 0,8 %A A345196 _Gus Wiseman_, Jun 26 2021