cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345202 Decimal expansion of gamma + zeta(2), where gamma is Euler's constant (A001620).

Original entry on oeis.org

2, 2, 2, 2, 1, 4, 9, 7, 3, 1, 7, 4, 9, 7, 5, 9, 2, 9, 7, 0, 7, 8, 9, 2, 7, 2, 5, 6, 7, 2, 8, 4, 2, 7, 6, 2, 0, 2, 6, 1, 1, 0, 9, 2, 3, 7, 1, 4, 6, 7, 2, 2, 0, 3, 6, 5, 4, 1, 3, 2, 5, 4, 6, 4, 2, 5, 4, 8, 7, 5, 1, 9, 7, 1, 8, 0, 8, 6, 5, 5, 4, 4, 7, 7, 0, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2021

Keywords

Comments

The value of the sum (see the Formula section) discovered in 1926 by the Italian mathematician and historian of science Giovanni Enrico Eugenio Vacca (1872-1953).

Examples

			2.22214973174975929707892725672842762026110923714672...
		

References

  • G. Vacca, Nuova serie per la costante di Eulero, C=0,577..., Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche, Matematiche e Naturali, Serie 6, Vol. 3 (1926), pp. 19-20.

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma + Pi^2/6, 10, 100][[1]]

Formula

Equals Sum_{k>=1} (1/floor(sqrt(k))^2 - 1/k) (Vacca, 1926).
Equals Sum_{k>=1} f(k)/k^2, where f(k) = Sum_{j=1..2*k} j/(j + k^2).
Equals A001620 + A013661.