cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345203 Decimal expansion of zeta(2) + 2*zeta(3).

Original entry on oeis.org

4, 0, 4, 9, 0, 4, 7, 8, 7, 3, 1, 6, 7, 4, 1, 5, 0, 0, 7, 2, 7, 1, 8, 9, 1, 4, 8, 9, 6, 6, 8, 9, 2, 5, 1, 7, 0, 7, 4, 8, 9, 2, 2, 4, 8, 5, 8, 8, 7, 7, 9, 6, 2, 0, 1, 3, 2, 0, 1, 0, 1, 3, 4, 0, 0, 5, 3, 6, 8, 3, 8, 8, 1, 9, 7, 5, 8, 2, 7, 0, 5, 4, 2, 0, 6, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2021

Keywords

Comments

Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Springer, 2013, section 3.71, p. 150.

Examples

			4.04904787316741500727189148966892517074892248588779...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[2] + 2*Zeta[3], 10, 100][[1]]

Formula

Equals A013661 + 2 * A002117.
Equals Sum_{k>=1} (k+2)/k^3.
Equals Sum_{k>=1} H(k)*H(k+1)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2011).
Equals Sum_{k>=1} (H(k)+1)/k^2.
Equals 1 + Sum_{k>=2} H(k)/(k-1)^2.
Equals Sum_{k>=2} (k-1)^2*(zeta(k)-1).
Equals 3 + Sum_{k>=3} (-1)^(k+1)*k^2*(zeta(k)-1).
Equals Integral_{x=0..1} log(x)*(log(x)-1)/(1-x) dx.
Equals Integral_{x>=1} log(x)*(log(x)+1)/(x*(x-1)) dx.
Equals Integral_{x>=0} x*(x+1)/(exp(x)-1) dx.