A345208 Decimal expansion of log(2*Pi) - gamma - 1, where gamma is Euler's constant (A001620).
2, 6, 0, 6, 6, 1, 4, 0, 1, 5, 0, 7, 8, 1, 2, 6, 2, 2, 9, 5, 4, 1, 4, 7, 3, 8, 2, 7, 2, 8, 8, 3, 2, 8, 4, 8, 6, 8, 0, 6, 3, 5, 6, 1, 1, 3, 3, 5, 6, 4, 3, 2, 2, 6, 8, 2, 8, 5, 3, 5, 8, 4, 6, 0, 8, 0, 6, 6, 3, 6, 6, 5, 0, 7, 6, 8, 5, 6, 1, 2, 4, 4, 5, 2, 5, 3, 9
Offset: 0
Examples
0.26066140150781262295414738272883284868063561133564...
References
- Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 3.42, pages 145 and 195.
Links
- Ovidiu Furdui, Solution to Problem U27, Mathematical Reflections, Vol. 6 (2006), pp. 27-28.
- Ovidiu Furdui, Exotic fractional part integrals and Euler's constant, Analysis, Vol. 31, No. 3 (2011), pp. 249-257.
- Mircea Ivan and Alexandru Lupaş, Problem 11206, The American Mathematical Monthly, Vol. 113, No. 2 (2006), p. 180; A Limit Involving Euler's Constant, Solution to problem 11206 by Richard A. Stong, ibid., Vol. 114, No. 10 (2007), pp. 928-929.
- Albert F. S. Wong, Problem 1845, Mathematics Magazine, Vol. 83, No. 2 (2010), p. 150; Integrating a square-fractional-reciprocal function, Solution to problem 1845 by Allen Stenger, ibid., Vol. 84, No. 2 (2011), pp. 155-156.
Programs
-
Mathematica
RealDigits[Log[2*Pi] - EulerGamma - 1, 10, 100][[1]]
Formula
Equals lim_{n->oo} (1/n) * Sum_{k=1..n} frac(n/k)^2, where frac(x) = x - floor(x) is the fractional part of x.
Equals Integral_{x=0..1} frac(1/x)^2 dx.
Equals 2 * Sum_{k>=2} (zeta(k)-1)/(k*(k+1)).
Equals -2 * Sum_{k>=1} (H(k) - log(k) - gamma - 1/(2*k)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Comments