cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345209 Number of Petrie polygons on the regular triangular map corresponding to the principal congruence subgroup Gamma(n) of the modular group.

This page as a plain text file.
%I A345209 #29 Jun 17 2025 20:23:49
%S A345209 1,1,3,4,6,6,21,16,27,12,66,24,78,42,36,64,136,162,190,48,252,132,253,
%T A345209 192,150,156,243,168,870,72,496,256,396,816,252,648,666,1140,468,384,
%U A345209 1722,504,903,1056,324,1518,3243,1536,1029,300,816,624,1378,1458,3960,1344,1140,1740,1770,576
%N A345209 Number of Petrie polygons on the regular triangular map corresponding to the principal congruence subgroup Gamma(n) of the modular group.
%C A345209 To each principal congruence subgroup Gamma(n) of the modular group Gamma = PSL(2,Z) there corresponds a regular triangular map (it is the quotient of the Farey map by Gamma(n)). A Petrie polygon is a closed left-right zig-zagging path on the map. a(n) is the number of such paths.
%H A345209 Tom Harris, <a href="/A345209/b345209.txt">Table of n, a(n) for n = 1..1000</a>
%H A345209 F. Klein, <a href="https://doi.org/10.1007/BF01677143">Ueber die Transformation siebenter Ordnungder elliptischen Funktionen</a>, Mathematische Annalen, 14 (1878), 428-471.
%H A345209 D. Singerman and J. Strudwick, <a href="https://doi.org/10.26493/1855-3974.864.e9b">Petrie polygons, Fibonacci sequences and Farey maps</a>, Ars Mathematica Contemporanea, 10 (2016), 349-357.
%F A345209 a(n) = A001766(n)/A301759(n), n >= 3 (Corollary 7.3 of Singerman & Strudwick)
%e A345209 The regular triangular map corresponding to Gamma(3) is the tetrahedron; one can easily check by hand that there are 3 distinct closed left-right zigzag paths (Petrie polygons) along the edges of the tetrahedron, so a(3) = 3.
%e A345209 Similarly, there are a(4) = 4 and a(5) = 6 such paths on the octahedron and the icosahedron, the maps corresponding to Gamma(4), and Gamma(5) respectively.
%e A345209 The map corresponding to Gamma(7) is the Klein map on his quartic curve. There are 21 Petrie polygons on this map; Klein drew 3 of them in his 1878 paper on the quartic, and the others can be found by rotating these through 2*Pi*k/7, k=1,...,6.
%t A345209 b[n_] := (n^3/2) Times @@ (1-1/Select[Range[n], Mod[n, #] == 0 && PrimeQ[#]&]^2);
%t A345209 c[n_] := With[{F = Fibonacci}, For[k = 1, True, k++, If[Mod[F[k], n] == 0 && (Mod[F[k+1], n] == 1 || Mod[F[k+1], n] == n-1), Return[k]]]];
%t A345209 a[n_] := If[n<3, 1, b[n]/c[n]];
%t A345209 Array[a, 60] (* _Jean-François Alcover_, Jun 11 2021 *)
%t A345209 Table[((n^3/2^Boole[n > 1]) Product[1 - 1/k^2, {k, Select[Divisors[n], PrimeQ]}])/NestWhile[# + 1 &, 1, ! (Mod[Fibonacci[#], n] == 0 && With[{f = Mod[Fibonacci[# + 1], n]}, f == 1 || f == n - 1]) &], {n, 60}] (* _Jan Mangaldan_, Sep 12 2021 *)
%o A345209 (Python)
%o A345209 from sympy import primefactors
%o A345209 def a(n):
%o A345209     # degenerate cases
%o A345209     if n == 1 or n == 2:
%o A345209         return 1
%o A345209     # calculate index of Γ(n) in Γ
%o A345209     index = n**3
%o A345209     for p in primefactors(n):
%o A345209         index *= (p**2 - 1)
%o A345209         index //= p**2
%o A345209     index //= 2
%o A345209     # calculate pisano semiperiod
%o A345209     sigma = 1
%o A345209     a, b = 1, 1
%o A345209     while (a,b) != (0,1) and (a,b) != (0, n - 1):
%o A345209         a, b = b, (a + b) % n
%o A345209         sigma += 1
%o A345209     # number of petrie polygons = index / sigma
%o A345209     return index // sigma
%Y A345209 A301759 gives the lengths of the Petrie polygons on the map in question.
%K A345209 nonn,easy,walk
%O A345209 1,3
%A A345209 _Tom Harris_, Jun 10 2021