A345213 Primes p such that q^r == r^q (mod p), where p,q,r are consecutive primes.
2, 11, 29, 59, 71, 149, 269, 431, 569, 599, 727, 1031, 1061, 1229, 1289, 1319, 1451, 1619, 2129, 2339, 2381, 2549, 2711, 2789, 3299, 3539, 4019, 4049, 4091, 4649, 4721, 5099, 5441, 5519, 5639, 5741, 5849, 6269, 6359, 6569, 6701, 6959, 7211, 8009, 8999, 9041, 9341, 10091, 10859, 11489, 11831
Offset: 1
Keywords
Examples
a(3) = 29 is a term because 29, 31 and 37 are consecutive primes and 37^31 == 31^37 == 19 (mod 29).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Includes A049437 except for 3.
Programs
-
Maple
q:= 2: r:= 3: R:= NULL: count:= 0: while count < 100 do p:= q; q:= r; r:= nextprime(r); if q&^r - r&^q mod p = 0 then count:= count+1; R:= R, p fi od: R;
Comments