This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345229 #34 Sep 13 2024 11:59:28 %S A345229 1,1,3,1,4,6,1,5,9,10,1,6,13,17,15,1,7,18,28,26,21,1,8,24,44,47,41,28, %T A345229 1,9,31,66,83,82,54,36,1,10,39,95,140,159,116,74,45,1,11,48,132,225, %U A345229 293,249,172,95,55,1,12,58,178,346,512,509,401,235,122,66,1,13,69,234,512,852,980,888,592,321,143,78 %N A345229 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1 <= x_2 <= ... <= x_k <= n} gcd(x_1, x_2, ..., x_k). %H A345229 Seiichi Manyama, <a href="/A345229/b345229.txt">Antidiagonals n = 1..140, flattened</a> %F A345229 G.f. of column k: (1/(1 - x)) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^k. %F A345229 T(n,k) = Sum_{j=1..n} Sum_{d|j} phi(j/d) * binomial(d+k-2, k-1). %F A345229 T(n,k) = Sum_{j=1..n} phi(j) * binomial(floor(n/j)+k-1,k). - _Seiichi Manyama_, Sep 13 2024 %e A345229 G.f. of column 3: (1/(1 - x)) * Sum_{j>=1} phi(j) * x^j/(1 - x^j)^3. %e A345229 Square array begins: %e A345229 1, 1, 1, 1, 1, 1, 1, ... %e A345229 3, 4, 5, 6, 7, 8, 9, ... %e A345229 6, 9, 13, 18, 24, 31, 39, ... %e A345229 10, 17, 28, 44, 66, 95, 132, ... %e A345229 15, 26, 47, 83, 140, 225, 346, ... %e A345229 21, 41, 82, 159, 293, 512, 852, ... %e A345229 28, 54, 116, 249, 509, 980, 1782, ... %p A345229 T:= (n, k)-> coeff(series((1/(1-x))* add(numtheory[phi](j) %p A345229 *x^j/(1-x^j)^k, j=1..n), x, n+1), x, n): %p A345229 seq(seq(T(n, 1+d-n), n=1..d), d=1..12); # _Alois P. Heinz_, Jun 11 2021 %t A345229 T[n_, k_] := Sum[DivisorSum[j, EulerPhi[j/#] * Binomial[k + # - 2, k - 1] &], {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 12}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Jun 11 2021 *) %o A345229 (PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, eulerphi(j/d)*binomial(d+k-2, k-1))); %o A345229 (PARI) T(n, k) = sum(j=1, n, eulerphi(j)*binomial(n\j+k-1, k)); \\ _Seiichi Manyama_, Sep 13 2024 %Y A345229 Columns k=1..4 give A000217, A272718, A344521, A344992. %Y A345229 Main diagonal gives A345230. %Y A345229 Cf. A343516, A344479. %K A345229 nonn,tabl %O A345229 1,3 %A A345229 _Seiichi Manyama_, Jun 11 2021