This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345230 #35 Sep 13 2024 11:59:01 %S A345230 0,1,4,13,44,140,512,1782,6652,24682,93599,354341,1359470,5210328, %T A345230 20098886,77621774,300797854,1167164438,4539201401,17674941735, %U A345230 68933414989,269143872226,1052114789548,4116808923486,16124224585644,63205911146740,247961982954952 %N A345230 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n <= n} gcd(x_1, x_2, ..., x_n). %H A345230 Seiichi Manyama, <a href="/A345230/b345230.txt">Table of n, a(n) for n = 0..1000</a> %F A345230 a(n) = Sum_{k=1..n} Sum_{d|k} phi(k/d) * binomial(d+n-2, n-1). %F A345230 a(n) = [x^n] (1/(1 - x)) * Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n. %F A345230 a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - _Vaclav Kotesovec_, Jun 11 2021 %F A345230 a(n) = Sum_{k=1..n} phi(k) * binomial(floor(n/k)+n-1,n). - _Seiichi Manyama_, Sep 13 2024 %p A345230 a:= n-> coeff(series((1/(1-x))* add(numtheory[phi](k) %p A345230 *x^k/(1-x^k)^n, k=1..n), x, n+1), x, n): %p A345230 seq(a(n), n=0..26); # _Alois P. Heinz_, Jun 11 2021 %t A345230 a[n_] := Sum[DivisorSum[k, EulerPhi[k/#] * Binomial[n + # - 2, n - 1] &], {k, 1, n}]; Array[a, 30, 0] (* _Amiram Eldar_, Jun 11 2021 *) %o A345230 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(k/d)*binomial(d+n-2, n-1))); %o A345230 (PARI) a(n) = sum(k=1, n, eulerphi(k)*binomial(n\k+n-1, n)); \\ _Seiichi Manyama_, Sep 13 2024 %Y A345230 Main diagonal of A345229. %Y A345230 Cf. A343517, A343553, A344525. %K A345230 nonn %O A345230 0,3 %A A345230 _Seiichi Manyama_, Jun 11 2021