A345252 2-1-Fibonacci cohort array, a rectangular array T(n,k) read by downward antidiagonals.
1, 2, 3, 4, 6, 5, 7, 11, 10, 8, 12, 19, 18, 16, 9, 20, 32, 31, 29, 17, 13, 33, 53, 52, 50, 30, 26, 14, 54, 87, 86, 84, 51, 47, 27, 15, 88, 142, 141, 139, 85, 81, 48, 28, 21, 143, 231, 230, 228, 140, 136, 82, 49, 42, 22, 232, 375, 374, 372, 229, 225, 137, 83, 76
Offset: 1
Examples
Northwest corner of {T(n,k)}: k=1 k=2 k=3 k=4 k=5 k=6 ... n=0: 1, 2, 4, 7, 12, 20, ... n=1: 3, 6, 11, 19, 32, 53, ... n=2: 5, 10, 18, 31, 52, 86, ... n=3: 8, 16, 29, 50, 84, 139, ... n=4: 9, 17, 30, 51, 85, 140, ... ... Northwest corner of {T(n,k)} in maximal Fibonacci expansion (see link): k=1 k=2 k=3 ... n=0: F(1), F(1)+F(2), F(1)+F(2)+F(3), ... n=1: F(1)+F(3), F(1)+F(3)+F(4), F(1)+F(3)+F(4)+F(5), ... n=2: F(1)+F(2)+F(4), F(1)+F(2)+F(4)+F(5), F(1)+F(2)+F(4)+F(5)+F(6), ... ... Northwest corner of {T(n,k)} as "Fibonacci gaps," or differences between successive indices in maximal Fibonacci expansion above, (see link): k=1 k=2 k=3 k=4 k=5 k=6 ... n=0: *, 1, 11, 111, 1111, 11111, ... n=1: 2, 21, 211, 2111, 21111, 211111, ... n=2: 12, 121, 1211, 12111, 121111, 1211111, ... n=3: 22, 221, 2211, 22111, 221111, 2211111, ... n=4: 122, 1221, 12211, 122111, 1221111, 12211111, ... ...
Links
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
- Parker Shectman, A Quilt after Fibonacci, Part 2 of 3: Cohorts, Free Monoids, and Numeration
Crossrefs
Programs
-
Mathematica
(* Define A000045 *) F[n_] := Fibonacci[n] (* Defined A130233 *) Finv[n_] := Floor[Log[GoldenRatio, Sqrt[5]n + 1]] (* Simplified Formula *) MatrixForm[Table[n + F[Finv[n] + k + 2] - F[Finv[n] + 2], {n, 0, 4}, {k, 1, 6}]] (* Branching Formula *) MatrixForm[Table[NestList[Function[# + F[Finv[#]]], n + F[Finv[n] + 1], 5], {n, 0, 4}]]
Comments