This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345263 #11 May 15 2025 19:14:14 %S A345263 1,5,28,21,3126,46688,823544,85,757,10000003130,285311670612,3032688, %T A345263 302875106592254,11112006826381564,437893890380862528,341, %U A345263 827240261886336764178,34059641,1978419655660313589123980,10250000003146,5842587018385982521381947992,341427877364219557681958394200 %N A345263 a(n) = Sum_{d|n} d^rad(d). %C A345263 If p is prime, a(p) = Sum_{d|p} d^rad(d) = 1^1 + p^p = p^p + 1. %C A345263 Inverse Möbius transform of n^rad(n). - _Wesley Ivan Hurt_, Mar 31 2025 %F A345263 a(prime(n)) = A125137(n). - _Michel Marcus_, Jun 12 2021 %e A345263 a(4) = Sum_{d|4} d^rad(d) = 1^1 + 2^2 + 4^2 = 21. %e A345263 a(6) = Sum_{d|6} d^rad(d) = 1^1 + 2^2 + 3^3 + 6^6 = 46688. %t A345263 Table[Sum[(1 - Ceiling[n/i] + Floor[n/i]) i^Product[k^((PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[i/k] + Floor[i/k])), {k, i}], {i, n}], {n, 30}] %o A345263 (PARI) rad(n) = factorback(factorint(n)[, 1]); %o A345263 a(n) = sumdiv(n, d, d^rad(d)); \\ _Michel Marcus_, Jun 12 2021 %Y A345263 Cf. A007947 (rad), A125137, A345261. %K A345263 nonn %O A345263 1,2 %A A345263 _Wesley Ivan Hurt_, Jun 12 2021