A345267 Conjectural order of the torsion subgroup of the group K_n(Z) (the algebraic K-theory groups of the integers).
1, 2, 2, 48, 1, 1, 1, 240, 1, 2, 2, 1008, 1, 1, 1, 480, 1, 2, 2, 528, 1, 1, 691, 65520, 1, 2, 2, 48, 1, 1, 3617, 16320, 1, 2, 87734, 57456, 1, 1, 174611, 13200, 1, 2, 155366, 1104, 1, 1, 236364091, 131040, 1, 2, 1315862, 48, 1, 1, 3392780147, 6960, 1, 2
Offset: 0
References
- C. Weibel, The K-book: An Introduction to Algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical Society, Providence, RI, 2013. ISBN: 978-0-8218-91322.
Links
- M. Kurihara, Some remarks on conjectures about cyclotomic fields and K-groups of Z, Compositio Math. 81 (1992), 223-236.
- J. Rognes, K_4(Z) is the trivial group, Topology 30 (2000), 267-281.
- C. Weibel, The K-book: An Introduction to Algebraic K-theory. Graduate Studies in Mathematics, 145. American Mathematical Society, Providence, RI, 2013. ISBN: 978-0-8218-91322.
Crossrefs
Programs
-
Python
from sympy import bernoulli def a(n): n_ = n % 8 k = n//4 + 1 b = bernoulli(2*k)/(4*k) d = {0:1, 1:2, 4:1, 5:1} if n_ == 2: return 2 * b.numerator elif n_ == 3: return 2 * b.denominator elif n_ == 6: return -1 * b.numerator elif n_ == 7: return b.denominator else: return d[n_]
Comments