cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345286 a(n) is the number of large or small squares that are used to tile primary squares of type 1 (see A344331) whose side length is A345285(n).

Original entry on oeis.org

20, 90, 272, 468, 650, 1280, 1332, 2900, 3600, 2450, 7650, 5760, 4160, 6642, 10388, 810, 16400, 10100, 1088, 25578, 29952, 14762, 27540, 20880, 42048, 50960, 54900, 41600, 28730, 65610, 81920, 90650, 60500, 38612, 98100, 50850, 125712, 85248, 142400, 149940
Offset: 1

Views

Author

Bernard Schott, Jun 13 2021

Keywords

Comments

Notation: s = side of the primary tiled squares, a = side of small squares, b = side of large squares, and z = number of small squares = number of large squares.
Every term is of the form z = (a*b)^2 * (a^2+b^2) = a*b*s with a < b.
Every such primary square is composed of m = a*b * (a^2+b^2) elementary rectangles of length L = a^2+b^2 and width W = a*b, so with an area A = a*b * (a^2+b^2) = m.
This sequence is not increasing: a(10) = 2450 < a(9) = 3600.
If gcd(a, b) = 1, then number of squares z = a*b * (a^2+b^2) is in A344334.
If a = 1 and b = n > 1, then number of squares z = n^2 * (n^2+1) is in A071253 \ {0,2}.
Every term is even.

Examples

			The primary square with side A345285(1) = 10 can be tiled with a(1) = 20 small squares of side a = 1 and 20 large squares of side b = 2.
      ___ ___ _ ___ ___ _
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_| with 10 elementary 2 x 5 rectangles
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|              ___ ___ _
     |___|___|_|___|___|_|             |   |   |_|
     |   |   |_|   |   |_|             |___|___|_|
     |___|___|_|___|___|_|
     |   |   |_|   |   |_|
     |___|___|_|___|___|_|
The primary square with side A345285(6) = 160 can be tiled with a(6) = 1280 small squares of side a = 2 and 1280 large squares of side b = 4.
		

References

  • Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.

Crossrefs