A345290 a(n) is obtained by replacing 2^k in binary expansion of n with Fibonacci(-k-2).
0, -1, 2, 1, -3, -4, -1, -2, 5, 4, 7, 6, 2, 1, 4, 3, -8, -9, -6, -7, -11, -12, -9, -10, -3, -4, -1, -2, -6, -7, -4, -5, 13, 12, 15, 14, 10, 9, 12, 11, 18, 17, 20, 19, 15, 14, 17, 16, 5, 4, 7, 6, 2, 1, 4, 3, 10, 9, 12, 11, 7, 6, 9, 8, -21, -22, -19, -20, -24
Offset: 0
Examples
For n = 3: - 3 = 2^1 + 2^0, - so a(3) = A039834(2+1) + A039834(2+0) = 2 - 1 = 1.
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..8191
Crossrefs
Programs
-
PARI
a(n) = { my (v=0, e); while (n, n-=2^e=valuation(n, 2); v+=fibonacci(-2-e)); v }
Comments