This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345293 #9 Jul 01 2021 23:44:07 %S A345293 2,73,149,211,307,467,659,839,1061,1319,1511,1697,1949,2129,2381,2677, %T A345293 2819,3137,3307,3407,3559,3907,4079,4253,4591,4877,5087,5443,5531, %U A345293 5683,5923,6221,6659,6791,6997,7393,7603,8111,8297,8641,8887,9029,9377,9461,9749 %N A345293 a(n) is the first number on the n-th layer in a layered square spiral of primes. %C A345293 The first prime, 2, is placed at the origin with Cartesian coordinates of (0, 0, 0) and the second prime, 3, is placed at (1, 0, 0). The m-th prime (m >= 3) is placed by moving one unit forward in the direction from the (m-2)-th prime to the (m-1)-th prime, if the next prime is not a twin prime of the current one; otherwise, by turning 90 degrees counterclockwise and moving one unit forward. When it comes to a spot already occupied by another number, the prime is moved up one layer above the number. %e A345293 First layer starts from 2 and second layer from 73. %e A345293 59<--53<--47<--43<--41 %e A345293 | | %e A345293 61 11<---7<---5 37 137<-131<-127<-113<-109<-107 %e A345293 | | | | | | %e A345293 67 13 2--->3 31 139 103 %e A345293 | | | | %e A345293 71 17-->19-->23-->29 73-->79-->83-->89-->97->101 %o A345293 (Python) %o A345293 from sympy import prime, nextprime %o A345293 print(2); d1 = 0; L = [0, 0, 0]; L1 = [] %o A345293 for i in range(1, 1501): %o A345293 p = prime(i); np = nextprime(p); d = (d1 + 1)%4 if np - p == 2 else d1 %o A345293 L[0] += 1 if d == 0 else -1 if d == 2 else 0 %o A345293 L[1] += 1 if d == 1 else -1 if d == 3 else 0 %o A345293 if L in L1: L[2] += 1; print(np) %o A345293 L1.append([L[0], L[1], L[2]]); d1 = d %Y A345293 Cf. A063826, A136626. %K A345293 nonn %O A345293 1,1 %A A345293 _Ya-Ping Lu_, Jun 13 2021