This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345297 #13 Jun 16 2021 04:56:36 %S A345297 0,1,2,3,5,6,7,10,11,13,14,15,22,23,26,27,29,30,31,43,45,46,47,54,55, %T A345297 58,59,61,62,63,94,95,107,109,110,111,118,119,122,123,125,126,127,187, %U A345297 189,190,191,222,223,235,237,238,239,246,247,250,251,253,254,255 %N A345297 a(n) is the least k >= 0 such that A331835(k) = n. %C A345297 Sequence A200947 gives the position of the last occurrence of a number in A331835. %H A345297 Rémy Sigrist, <a href="/A345297/b345297.txt">Table of n, a(n) for n = 0..2000</a> %H A345297 Rémy Sigrist, <a href="/A345297/a345297.txt">C program for A345297</a> %F A345297 a(A014284(n)) = 2^n - 1. %F A345297 a(n) <= A200947(n). %e A345297 We have: %e A345297 n| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 %e A345297 ----------+------------------------------------------------------------------ %e A345297 A331835(n)| 0 1 2 3 3 4 5 6 5 6 7 8 8 9 10 11 7 8 9 %e A345297 So a(0) = 0, %e A345297 a(1) = 1, %e A345297 a(2) = 2, %e A345297 a(3) = 3, %e A345297 a(4) = 5, %e A345297 a(5) = 6, %e A345297 a(6) = 7, %e A345297 a(7) = 10, %e A345297 a(8) = 11, %e A345297 a(9) = 13, %e A345297 a(10) = 14, %e A345297 a(11) = 15. %o A345297 (C) See Links section. %o A345297 (Python) %o A345297 from sympy import prime %o A345297 def p(n): return prime(n) if n >= 1 else 1 %o A345297 def A331835(n): return sum(p(i)*int(b) for i, b in enumerate(bin(n)[:1:-1])) %o A345297 def adict(klimit): %o A345297 adict = dict() %o A345297 for k in range(klimit+1): %o A345297 fk = A331835(k) %o A345297 if fk not in adict: adict[fk] = k %o A345297 n, alst = 0, [] %o A345297 while n in adict: alst.append(adict[n]); n += 1 %o A345297 return alst %o A345297 print(adict(255)) # _Michael S. Branicky_, Jun 13 2021 %Y A345297 Cf. A014284, A200947, A331835. %K A345297 nonn,base %O A345297 0,3 %A A345297 _Rémy Sigrist_, Jun 13 2021