cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345302 a(n) = Sum_{p|n, p prime} lcm(p,n/p).

This page as a plain text file.
%I A345302 #16 Jul 13 2025 21:19:45
%S A345302 0,2,3,2,5,12,7,4,3,20,11,18,13,28,30,8,17,24,19,30,42,44,23,36,5,52,
%T A345302 9,42,29,90,31,16,66,68,70,30,37,76,78,60,41,126,43,66,60,92,47,72,7,
%U A345302 60,102,78,53,72,110,84,114,116,59,150,61,124,84,32,130,198,67,102,138,210
%N A345302 a(n) = Sum_{p|n, p prime} lcm(p,n/p).
%C A345302 If p is prime, a(p) = Sum_{p|p} lcm(p,p/p) = p.
%H A345302 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%F A345302 a(p^k) = p^(k-1+floor(1/k)) for p prime and k>=1. - _Wesley Ivan Hurt_, Jul 09 2025
%e A345302 a(12) = Sum_{p|12} lcm(p,12/p) = lcm(2,6) + lcm(3,4) = 6 + 12 = 18.
%t A345302 Table[Sum[LCM[k, n/k] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
%Y A345302 Cf. A008472, A057670, A345266, A369915.
%K A345302 nonn
%O A345302 1,2
%A A345302 _Wesley Ivan Hurt_, Jun 13 2021