This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345314 #16 Jun 18 2021 01:14:30 %S A345314 449,499,1009,1699,2549,4289,4441,4729,6449,6481,8419,9619,12149, %T A345314 14449,16361,16529,16729,16981,19681,21169,22549,24019,25121,25169, %U A345314 25841,28099,28949,30259,34819,36529,38449,41521,41681,41849,42209,43481,43721,43969,45329,46889 %N A345314 Primes that can be constructed by concatenating two squares >= 4. %C A345314 If we allow 1, we get sequence A167535. %H A345314 Robert Israel, <a href="/A345314/b345314.txt">Table of n, a(n) for n = 1..10000</a> %e A345314 449 is a prime that is a concatenation of two squares: 4 and 49. %p A345314 zcat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc: %p A345314 select(t -> t <= 10^5 and isprime(t), {seq(seq(zcat(a^2,b^2),a=2..100),b=3..1000,2)}); # _Robert Israel_, Jun 17 2021 %t A345314 Take[Select[Union[Flatten[Table[FromDigits[Join[IntegerDigits[n^2],IntegerDigits[k^2]]], {n, 2, 300}, {k, 2, 300}]]], PrimeQ[#] &], 60] %o A345314 (Python) %o A345314 from sympy import isprime %o A345314 def aupto(lim): %o A345314 s = list(i**2 for i in range(2, int(lim**(1/2))+2)) %o A345314 t = set(int(str(a)+str(b)) for a in s for b in s) %o A345314 return sorted(filter(isprime, filter(lambda x: x<=lim, t))) %o A345314 print(aupto(49000)) # _Michael S. Branicky_, Jun 13 2021 %Y A345314 Cf. A167535. %K A345314 nonn,base %O A345314 1,1 %A A345314 _Tanya Khovanova_, Jun 13 2021