This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345321 #19 Jun 04 2022 21:16:56 %S A345321 0,2,3,6,5,11,7,12,12,17,11,27,13,23,23,28,17,38,19,41,31,35,23,57,30, %T A345321 41,36,55,29,71,31,60,47,53,47,90,37,59,55,87,41,95,43,83,77,71,47, %U A345321 121,56,92,71,97,53,116,71,117,79,89,59,167,61,95,103,120,83,143,67,125,95 %N A345321 Sum of the divisors of n whose cube does not divide n. %H A345321 Harvey P. Dale, <a href="/A345321/b345321.txt">Table of n, a(n) for n = 1..1000</a> %F A345321 a(n) = Sum_{k=1..n} k * (ceiling(n/k^3) - floor(n/k^3)) * (1 - ceiling(n/k) + floor(n/k)). %F A345321 a(n) = A000203(n) - A333843(n). - _Rémy Sigrist_, Jun 14 2021 %e A345321 a(16) = 28; The divisors of 16 whose cube does not divide 16 are: 4, 8 and 16. The sum of these divisors is then 4 + 8 + 16 = 28. %t A345321 Table[Sum[k (Ceiling[n/k^3] - Floor[n/k^3]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}] %t A345321 Table[Total[Select[Divisors[n],Mod[n,#^3]!=0&]],{n,100}] (* _Harvey P. Dale_, May 01 2022 *) %o A345321 (PARI) a(n) = sumdiv(n, d, if (n % d^3, d)); \\ _Michel Marcus_, Jun 13 2021 %o A345321 (Python 3.8+) %o A345321 from math import prod %o A345321 from sympy import factorint %o A345321 def A345321(n): %o A345321 f = factorint(n).items() %o A345321 return prod((p**(q+1)-1)//(p-1) for p, q in f) - prod((p**(q//3+1)-1)//(p-1) for p, q in f) # _Chai Wah Wu_, Jun 14 2021 %Y A345321 Cf. A000203, A333843. %K A345321 nonn %O A345321 1,2 %A A345321 _Wesley Ivan Hurt_, Jun 13 2021