A345330 Composite numbers k for which m == 0 (mod k) is the only solution to m^(2^v(k-1)+1) == -m (mod k), where v(k) = A007814(k) is the 2-adic valuation of k.
9, 21, 25, 27, 33, 45, 49, 57, 63, 65, 69, 77, 81, 93, 99, 105, 117, 121, 125, 129, 133, 141, 145, 147, 161, 165, 169, 171, 177, 185, 189, 201, 207, 209, 213, 217, 225, 231, 237, 243, 245, 249, 253, 261, 265, 273, 279, 285, 289, 297, 301, 305, 309, 321, 325
Offset: 1
Keywords
Examples
225 = 3^2 * 5^2 is a term since v(3-1) = 1 <= v(225-1) = 7, v(5-1) = 2 <= v(225-1) = 7. Also, the equation m^(2^v(225-1)+1) == -m (mod 225) has a unique solution m == 0 (mod 225). 1885 = 5 * 13 * 29 is a term since v(5-1) = v(13-1) = v(29-1) = 2 <= v(1885-1) = 2. Also, the equation m^(2^v(1885-1)+1) == -m (mod 1885) has a unique solution m == 0 (mod 1885).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isA345330(n) = if(!isprime(n) && n>1 && n%2, my(f=factor(n), w=omega(n)); for(i=1, w, if(valuation(f[i,1]-1,2) > valuation(n-1,2), return(0))); 1, 0)
Extensions
Name revised by Michael B. Porter, Feb 22 2023
Comments