A345331 Odd numbers k > 1 such that m^(2^v(k-1)+1) == -m (mod k) has more than one solution modulo k, where v(k) = A007814(k) is the 2-adic valuation of k.
15, 35, 39, 51, 55, 75, 85, 87, 91, 95, 111, 115, 119, 123, 135, 143, 153, 155, 159, 175, 183, 187, 195, 203, 205, 215, 219, 221, 235, 247, 255, 259, 267, 275, 287, 291, 295, 299, 303, 315, 319, 323, 327, 335, 339, 351, 355, 357, 365, 371, 375, 391, 395, 403
Offset: 1
Keywords
Examples
51 is a term since 51 = 3 * 17 and v(17-1) = 4 > v(51-1) = 1. Also, m^(2^v(51-1)+1) == -m (mod 51) has three solutions: m == 0, 21, 30 (mod 51).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA345331(n) = if(!isprime(n) && n>1 && n%2, my(f=factor(n), w=omega(n)); for(i=1, w, if(valuation(f[i, 1]-1, 2) > valuation(n-1, 2), return(1))); 0, 0)
Comments